Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery

用于优化癌症研究成像生物标志物的信息学工具

基本信息

项目摘要

DESCRIPTION (provided by applicant): Biologists and other human-health related scientists have been employing informatics approaches that integrate disparate data types (e.g. molecular, clinical) to make new discoveries about the biological basis of diseases, the treatment of diseases, and response to therapy. Human imaging is a rich source of phenotypic information that could be integrated with these other data, but they have been largely inaccessible to biologists for use in their investigations because the information contained within them is usually not quantitative. Making images and quantitative characterizations of visualized tissues available to the larger community holds great promise to accelerate research and discovery including the development of imaging biomarkers in cancer. The first critical step in the development and use of imaging biomarkers in cancer is the segmentation of the target lesions from their environments. Once the lesions have been segmented, one can computationally characterize many lesion image features for integration with other data types. To accelerate progress towards developing and optimizing algorithms for lesion segmentation and characterization, we will develop, deploy, and disseminate an informatics platform. The Cloud-based Image Biomarker Optimization Platform (C-BIBOP) will include 1) imaging data stored locally or accessed through curated repositories such as the Cancer Imaging Archive, 2) a set of segmentation and feature computation algorithms that can be run on these or newly uploaded data, 3) the outputs of lesion segmentation algorithms for these data, 4) the outputs of feature computation algorithms for these data, and 5) a set of metrics and visualization tools for the comparison of the performance of these algorithms, segmentations and features. Specifically, we will develop the C-BIBOP for the large-scale central analysis of multi-institutional quantitative image data by developing a cloud-based infrastructure to support customized computing environments, "experiments" that include images and associated meta-data, and a reporting module that performs comparisons, statistical analyses and visualizations of the results of segmentation and characterization. The basic infrastructure will be initially be populated with "baseline" algorithms, segmentations and image descriptors developed by Columbia, MGH, Moffitt, and Stanford (CMMS) investigators as well as limited datasets. We will deploy the C-BIBOP on a cloud platform, develop and share "experiments" consisting of data, algorithms and exploration of parameter spaces, and evaluate it at the participating institutions with state-of-the-art algorithms and well-curated datasets. Finally, we have identified a set of early adopters and beta-testers from within the Quantitative Imaging Network, and external collaborators and industrial partners who have indicated their willingness to contribute algorithms, data and results to C- BIBOP. We will host at least two permanent online collections of images and maintain the best segmentations and characterizations available that can be utilized by participants at anytime.
描述(由申请人提供):生物学家和其他与人类健康相关的科学家一直在使用信息学方法,整合不同的数据类型(例如分子、临床),以对疾病的生物学基础、疾病的治疗和治疗反应做出新的发现。人类成像是表型信息的丰富来源,可以与这些其他数据相结合,但由于其中包含的信息,生物学家在很大程度上无法在他们的研究中使用

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jayashree Kalpathy-Cramer其他文献

Jayashree Kalpathy-Cramer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jayashree Kalpathy-Cramer', 18)}}的其他基金

Robust AI to develop risk models in retinopathy of prematurity using deep learning
强大的人工智能利用深度学习开发早产儿视网膜病变的风险模型
  • 批准号:
    10254429
  • 财政年份:
    2020
  • 资助金额:
    $ 74.46万
  • 项目类别:
Distributed Learning of Deep Learning Models for Cancer Research
癌症研究深度学习模型的分布式学习
  • 批准号:
    10228687
  • 财政年份:
    2019
  • 资助金额:
    $ 74.46万
  • 项目类别:
Distributed Learning of Deep Learning Models for Cancer Research
癌症研究深度学习模型的分布式学习
  • 批准号:
    10018827
  • 财政年份:
    2019
  • 资助金额:
    $ 74.46万
  • 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
  • 批准号:
    9564836
  • 财政年份:
    2014
  • 资助金额:
    $ 74.46万
  • 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
  • 批准号:
    9334737
  • 财政年份:
    2014
  • 资助金额:
    $ 74.46万
  • 项目类别:
Quantitative MRI of Glioblastoma Response
胶质母细胞瘤反应的定量 MRI
  • 批准号:
    8659191
  • 财政年份:
    2011
  • 资助金额:
    $ 74.46万
  • 项目类别:
Clinical Image Retrieval: User needs assessment, toolbox development & evaluation
临床图像检索:用户需求评估、工具箱开发
  • 批准号:
    7739714
  • 财政年份:
    2009
  • 资助金额:
    $ 74.46万
  • 项目类别:
Clinical Image Retrieval: User needs assessment toolbox development & evaluation
临床图像检索:用户需求评估工具箱开发
  • 批准号:
    8299311
  • 财政年份:
    2009
  • 资助金额:
    $ 74.46万
  • 项目类别:
Clinical Image Retrieval: User needs assessment toolbox development & evaluation
临床图像检索:用户需求评估工具箱开发
  • 批准号:
    8323502
  • 财政年份:
    2009
  • 资助金额:
    $ 74.46万
  • 项目类别:

相似海外基金

MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
  • 批准号:
    10490338
  • 财政年份:
    2021
  • 资助金额:
    $ 74.46万
  • 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
  • 批准号:
    10353104
  • 财政年份:
    2021
  • 资助金额:
    $ 74.46万
  • 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
  • 批准号:
    21K04320
  • 财政年份:
    2021
  • 资助金额:
    $ 74.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
  • 批准号:
    10688286
  • 财政年份:
    2021
  • 资助金额:
    $ 74.46万
  • 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
  • 批准号:
    20K17755
  • 财政年份:
    2020
  • 资助金额:
    $ 74.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
  • 批准号:
    10578649
  • 财政年份:
    2019
  • 资助金额:
    $ 74.46万
  • 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
  • 批准号:
    10295141
  • 财政年份:
    2019
  • 资助金额:
    $ 74.46万
  • 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
  • 批准号:
    10041708
  • 财政年份:
    2019
  • 资助金额:
    $ 74.46万
  • 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
  • 批准号:
    9776149
  • 财政年份:
    2019
  • 资助金额:
    $ 74.46万
  • 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
  • 批准号:
    2063934
  • 财政年份:
    2018
  • 资助金额:
    $ 74.46万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了