Islet on a Chip
芯片上的胰岛
基本信息
- 批准号:8813382
- 负责人:
- 金额:$ 684.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-20 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:BedsBeta CellBiological AssayBiologyBiomimetic DevicesBiomimeticsBlood GlucoseCell LineCell SurvivalCell physiologyCellsComplexDevelopmentDevicesDiabetes MellitusDiseaseDisease modelEmbryoEndocrineEngineeringEvaluationFailureFunctional disorderGenerationsGeometryGlucagonGlucoseGoalsHormonesHumanIn VitroIncidenceInsulinIslet CellIslets of LangerhansLaboratoriesMeasuresMechanicsMethodsMicrofluidic MicrochipsMicrofluidicsMorbidity - disease rateNon-Insulin-Dependent Diabetes MellitusNormal CellOrganOrganogenesisOrganoidsPancreasPancreatic PolypeptidePatientsPharmaceutical PreparationsPhysiologyPopulationPreclinical Drug EvaluationProductionReplacement TherapyReporterResearchRoleSignal TransductionSkeletal MuscleSomatostatinSourceSpeedStem cellsStructureStructure of beta Cell of isletSystemTechnologyTestingTherapeuticTimeTissue EngineeringTissuesbasecell typecostdesigndiabeticdrug testingghrelinhuman embryonic stem cellimprovedinduced pluripotent stem cellinsulin sensitivityinterestisletislet stem cellsmortalitynew technologypreclinical evaluationprogenitorpublic health relevancerelease of sequestered calcium ion into cytoplasmresearch studyresponsescreeningself organizationstemstem cell biologytechnology developmenttherapeutic targettype I and type II diabetes
项目摘要
DESCRIPTION: Mellitus results from failure pancreatic islets leading to an increase in morbidity and mortality. Mechanistic studies of this disease are hindered by low availability, high variabiliy and the cost of human islets. Our recent advances have led to the first successful method to generate mature, glucose sensing- insulin secreting b cells from human embryonic stem (ES) cells in vitro. This method, and its application using human iPS cells, provides a virtually unlimited supply of standardized human β cells. Moreover, as the β cells can be prepared from patient iPS cells, normal and diseased states can be analyzed. This advance provides a renewable source of b cells for cell replacement therapy for insulin dependent diabetics and the opportunity to perform rigorous disease modeling to identify therapeutic targets for all diabetics.
Despite these advances, challenges remain. Robust, sensitive and routine technologies to assess β cell function are lacking. Further, it is unlikely that b cells by themselves will recapitulate the complex biology involved in islet function. As such, the proposed research aims to combine approaches in stem cell and islet biology with tissue engineering to design, build and test new technologies for generating human islets in vitro and assessing their function in microfluidic devices. Using reverse engineering principles we will design and build a bio-inspired microfluidic chip that supports the survival and function of cell clusters containing b cells. This
"islet chip" design will enable rigorous and sensitive evaluation of β cell function that goes beyond current technologies. This chip will also provide a platform to evaluate human cadaveric islets by quantifying their functional variability. In parallel, we seek to generate whole islets i vitro using a combination of top-down and bottom-up tissue engineering approaches. Endocrine progenitors from human stem cells (ES and iPS) will be introduced to a chip designed to screen a combination of substrates, matrixes and mechanical forces to identify a niche that supports differentiation to islet-like structures with all endocrine cell types. The resulting stem cell-derved islets will be evaluated in our islet chip to describe the functional differences between these ES-islets, bcells alone and cadaveric islets. Finally, we will use these technologies for disease modeling and drug screening by generating healthy and diseased islets from iPS cells representing different disease states (healthy, type 1, type 2 diabetes, MODY) and evaluate the function and response of these islets to diabetes drugs. These studies will provide validated technologies that will increase our understanding of diabetes and speed development of new therapies.
描述:糖尿病是由胰岛衰竭引起的,导致发病率和死亡率增加。这种疾病的机制研究因人类胰岛的可用性低、变异性高和成本高而受到阻碍。我们最近的进展导致第一个成功的方法在体外从人胚胎干 (ES) 细胞产生成熟的葡萄糖感应胰岛素分泌 b 细胞。这种方法及其在人类 iPS 细胞中的应用,提供了几乎无限量的标准化人类 β 细胞供应。此外,由于可以从患者 iPS 细胞中制备 β 细胞,因此可以分析正常和患病状态。这一进展为胰岛素依赖型糖尿病患者的细胞替代疗法提供了可再生的 b 细胞来源,并有机会进行严格的疾病建模以确定所有糖尿病患者的治疗靶点。
尽管取得了这些进展,挑战仍然存在。缺乏稳健、灵敏和常规的技术来评估 β 细胞功能。此外,b 细胞本身不太可能重现与胰岛功能有关的复杂生物学。因此,拟议的研究旨在将干细胞和胰岛生物学方法与组织工程相结合,设计、构建和测试用于体外生成人类胰岛并评估其在微流体装置中的功能的新技术。利用逆向工程原理,我们将设计和构建一种仿生微流控芯片,支持含有 b 细胞的细胞簇的存活和功能。这
“胰岛芯片”设计将能够对β细胞功能进行严格而灵敏的评估,这超出了现有技术。该芯片还将提供一个平台,通过量化人类尸体胰岛的功能变异性来评估其功能。与此同时,我们寻求结合自上而下和自下而上的组织工程方法在体外生成完整的胰岛。来自人类干细胞(ES 和 iPS)的内分泌祖细胞将被引入一种芯片,该芯片旨在筛选底物、基质和机械力的组合,以确定支持所有内分泌细胞类型分化为胰岛样结构的生态位。由此产生的干细胞来源的胰岛将在我们的胰岛芯片中进行评估,以描述这些 ES 胰岛、单独的 b 细胞和尸体胰岛之间的功能差异。最后,我们将利用这些技术进行疾病建模和药物筛选,从代表不同疾病状态(健康、1型、2型糖尿病、MODY)的iPS细胞生成健康和患病的胰岛,并评估这些胰岛的功能和对糖尿病药物的反应。这些研究将提供经过验证的技术,增加我们对糖尿病的了解并加速新疗法的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS A MELTON其他文献
DOUGLAS A MELTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS A MELTON', 18)}}的其他基金
Biomarkers for Diabetes Using Stem Cell-Derived Beta Cells
使用干细胞衍生的 β 细胞作为糖尿病生物标志物
- 批准号:
8813227 - 财政年份:2014
- 资助金额:
$ 684.42万 - 项目类别:
Reconstruction of Human Type 1 Diabetes in Mice
在小鼠中重建人类 1 型糖尿病
- 批准号:
8183478 - 财政年份:2011
- 资助金额:
$ 684.42万 - 项目类别:
Regenerating Beta Cells by Lineage Reprogramming
通过谱系重编程再生β细胞
- 批准号:
8522193 - 财政年份:2010
- 资助金额:
$ 684.42万 - 项目类别:
Regenerating Beta Cells by Lineage Reprogramming
通过谱系重编程再生β细胞
- 批准号:
8316302 - 财政年份:2010
- 资助金额:
$ 684.42万 - 项目类别:
Regenerating Beta Cells by Lineage Reprogramming
通过谱系重编程再生β细胞
- 批准号:
8717645 - 财政年份:2010
- 资助金额:
$ 684.42万 - 项目类别:
Regenerating Beta Cells by Lineage Reprogramming
通过谱系重编程再生β细胞
- 批准号:
7993955 - 财政年份:2010
- 资助金额:
$ 684.42万 - 项目类别:
Regenerating Beta Cells by Lineage Reprogramming
通过谱系重编程再生β细胞
- 批准号:
8466013 - 财政年份:2010
- 资助金额:
$ 684.42万 - 项目类别:
Regenerating Beta Cells by Lineage Reprogramming
通过谱系重编程再生β细胞
- 批准号:
8143353 - 财政年份:2010
- 资助金额:
$ 684.42万 - 项目类别:
Identification of Genes and Compounds That Control Beta Cell Replication
控制β细胞复制的基因和化合物的鉴定
- 批准号:
8044507 - 财政年份:2010
- 资助金额:
$ 684.42万 - 项目类别:
Pancreatic Islet Design & Engineering (SysCODE 3 of 10)
胰岛设计
- 批准号:
8070896 - 财政年份:2007
- 资助金额:
$ 684.42万 - 项目类别:
相似海外基金
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
- 批准号:
10750765 - 财政年份:2024
- 资助金额:
$ 684.42万 - 项目类别:
Sustaining functional maturity of pancreatic beta cell through nutritional control
通过营养控制维持胰腺β细胞的功能成熟
- 批准号:
23H03304 - 财政年份:2023
- 资助金额:
$ 684.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Beta cell rest を目指した新たな2型糖尿病治療法の確立
建立针对 β 细胞休息的新型 2 型糖尿病治疗方法
- 批准号:
23K07959 - 财政年份:2023
- 资助金额:
$ 684.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Graft localized drug delivery to augment beta cell replacement therapies for diabetes
移植局部药物递送以增强糖尿病的β细胞替代疗法
- 批准号:
480374 - 财政年份:2023
- 资助金额:
$ 684.42万 - 项目类别:
Operating Grants
PITPNA in pancreatic beta-cell dysfunction and diabetes pathogenesis
PITPNA 在胰腺 β 细胞功能障碍和糖尿病发病机制中的作用
- 批准号:
10636228 - 财政年份:2023
- 资助金额:
$ 684.42万 - 项目类别:
The Influence of Developmental Exposure to Maternal Overnutrition and Metformin on Offspring Mitochondrial Health and Beta Cell Function
发育期暴露于母亲营养过剩和二甲双胍对后代线粒体健康和 β 细胞功能的影响
- 批准号:
10601500 - 财政年份:2023
- 资助金额:
$ 684.42万 - 项目类别:
Nutrient-sensor O-GlcNAc Transferase Regulation of Autophagy in Homeostatis of Pancreatic Beta-cell Mass and Function
营养传感器 O-GlcNAc 转移酶对胰腺 β 细胞质量和功能稳态中自噬的调节
- 批准号:
10907874 - 财政年份:2023
- 资助金额:
$ 684.42万 - 项目类别:
New strategies in cell replacement therapies for diabetes: role of USP7 in iPSC and adult organoids beta cell differentiation
糖尿病细胞替代疗法的新策略:USP7 在 iPSC 和成体类器官 β 细胞分化中的作用
- 批准号:
MR/X01813X/1 - 财政年份:2023
- 资助金额:
$ 684.42万 - 项目类别:
Research Grant
Effect of Dietary Carbohydrate on Diabetes Control and Beta Cell Function in Children with Newly Diagnosed Diabetes.”
膳食碳水化合物对新诊断糖尿病儿童的糖尿病控制和 β 细胞功能的影响。
- 批准号:
10637032 - 财政年份:2023
- 资助金额:
$ 684.42万 - 项目类别:
Development of platforms for beta cell-specific delivery and ligand discovery
开发β细胞特异性递送和配体发现平台
- 批准号:
10738505 - 财政年份:2023
- 资助金额:
$ 684.42万 - 项目类别:














{{item.name}}会员




