Informatics Tools for Pharmacogenomic Discovery using Practice-based Data
使用基于实践的数据进行药物基因组发现的信息学工具
基本信息
- 批准号:8629996
- 负责人:
- 金额:$ 64.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-18 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:Adverse eventAlgorithmsAnthracyclinesArchivesAwardBiocompatible MaterialsBiologyBiomedical ComputingBiomedical ResearchBostonCardiotoxicityCellsClinicClinicalClinical DataClostridium difficileColitisCommunitiesComputer softwareComputerized Medical RecordCoupledDNADataData SetDatabasesDiseaseDrug ExposureDrug toxicityElectronicsEventFoundationsFundingGenetic VariationGenomicsGenotypeGrantHealthcare SystemsHeparinInformaticsInformation ManagementInstitutionKnowledge DiscoveryLinkMedicineMethodsModelingMorphologic artifactsNatural Language ProcessingNatureObservational StudyOntologyOutcomePatientsPediatric HospitalsPharmaceutical PreparationsPharmacogenomicsPhenotypePopulation HeterogeneityPopulation StudyResearchResearch PersonnelResourcesSamplingScienceSiteStandardizationStructureSystemTerminologyTextThrombocytopeniaTimeTimeLineToxic effectTreatment outcomeUnited States National Institutes of HealthVancomycinVisionWarfarinbasebiobankcase controlclinical careclopidogreldata integrationdisorder riskdrug efficacyexome sequencinggenetic variantimprovedlarge-scale databasenovelopen sourcepublic health relevancerapid growthrare variantresponsesuccesssurveillance studytooluser-friendlyvirtual
项目摘要
DESCRIPTION (provided by applicant): Rapid growth in the clinical implementation of large electronic medical records (EMRs) has led to an unprecedented expansion in the availability of dense longitudinal datasets for observational research. More recently, huge efforts have linked EMR databases with archived biological material, to accelerate research in personalized medicine. EMR- linked DNA biobanks have identified common and rare genetic variants that contribute to risk of disease. An appealing vision, which has not been extensively explored, is to use EMRs-linked biobanks for pharmacogenomic studies, which identify associations between genetic variation and drug efficacy and toxicity. The longitudinal nature of the data contained within EMRs make them ideal for quantifying drug outcome (both efficacy and toxicity). Efforts are already underway to link these EMRs across institutions, and standardize the definition of phenotypes for large-scale studies of treatment outcome, specifically within the context of routine clinical care. Despite its success, EMR-based pharmacogenomic studies are often hampered by its data-intensive nature -- it is time- consuming and costly to extract and integrate data from multiple heterogeneous EMR databases, for large-scale pharmacogenomic studies. The Informatics for Integrating Biology and the Bedside (i2b2) is a National Center for Biomedical Computing based at Partners Healthcare System. I2b2 has developed a scalable informatics framework to enable clinical researchers to repurpose existing EMR data for clinical and genomic discovery. In this study, we will collaborate with i2b2 to extend its informatics framework to the pharmacogenomics domain, by proposing the following specific aims: 1) Develop new methods to extract and model drug exposure and outcome information from EMR and integrate them with the i2b2 NLP components; 2) Build ontology tools to normalize and integrate pharmacogenomic data across different sites; 3) Conduct known and novel pharmacogenomic studies to evaluate and refine tools developed in Aim 1 and 2; and 4) Disseminate the developed informatics tools among pharmacogenomic researchers.
描述(由申请人提供):大型电子病历(EMR)临床应用的快速增长导致用于观察性研究的密集纵向数据集的可获得性前所未有地扩大。最近,巨大的努力将电子病历数据库与存档的生物材料联系起来,以加快个性化医学的研究。与EMR相关的DNA生物库已经确定了导致疾病风险的常见和罕见的遗传变异。一个尚未被广泛探索的吸引人的愿景是使用eMRS连接的生物库进行药物基因组学研究,确定遗传变异与药物疗效和毒性之间的联系。EMR中包含的数据的纵向性质使其成为量化药物结果(疗效和毒性)的理想工具。已经在努力将这些机构的急诊医生联系起来,并将治疗结果大规模研究的表型定义标准化,特别是在常规临床护理的背景下。尽管取得了成功,但基于电子病历的药物基因组研究往往因其数据密集型的性质而受到阻碍--从多个不同的电子病历数据库中提取和整合数据用于大规模药物基因组研究既耗时又昂贵。整合生物学和床边的信息学(I2b2)是总部设在合作伙伴医疗系统的国家生物医学计算中心。I2b2开发了一个可扩展的信息学框架,使临床研究人员能够将现有的EMR数据重新用于临床和基因组发现。在这项研究中,我们将与i2b2合作,通过提出以下具体目标将其信息学框架扩展到药物基因组学领域:1)开发从EMR中提取药物暴露和结果信息并对其进行建模的新方法,并将它们与i2b2 NLP组件集成;2)构建本体工具,以标准化和集成不同站点的药物基因组数据;3)进行已知和新颖的药物基因组研究,以评估和改进目标1和2中开发的工具;以及4)在药物基因组研究人员中传播开发的信息学工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua C. Denny其他文献
ADT-2016-772-ver9-Pulley_4P 113..119
ADT-2016-772-ver9-Puley_4P 113..119
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jill M. Pulley;Jana K. Shirey;Robert R. Lavieri;Rebecca N. Jerome;Nicole M. Zaleski;David M. Aronoff;Lisa Bastarache;Xinnan Niu;Kenneth J. Holroyd;Dan M. Roden;Eric P. Skaar;Colleen M. Niswender;Lawrence J. Marnett;Craig W. Lindsley;Leeland B. Ekstrom;Alan R. Bentley;Gordon R. Bernard;Charles C. Hong;Joshua C. Denny - 通讯作者:
Joshua C. Denny
A High-Throughput Genetic Analysis of Common Drug Allergy Labels Using Data from a Large Biobank
- DOI:
10.1016/j.jaci.2017.12.937 - 发表时间:
2018-02-01 - 期刊:
- 影响因子:
- 作者:
Elizabeth J. Phillips;Wei-Qi Wei;Christian Michael Shaffer;QiPing Feng;Cosby A. Stone;C. Michael Stein;Dan M. Roden;Joshua C. Denny - 通讯作者:
Joshua C. Denny
Genetic drivers of heterogeneity in type 2 diabetes pathophysiology
2 型糖尿病病理生理学中异质性的遗传驱动因素
- DOI:
10.1038/s41586-024-07019-6 - 发表时间:
2024-02-19 - 期刊:
- 影响因子:48.500
- 作者:
Ken Suzuki;Konstantinos Hatzikotoulas;Lorraine Southam;Henry J. Taylor;Xianyong Yin;Kim M. Lorenz;Ravi Mandla;Alicia Huerta-Chagoya;Giorgio E. M. Melloni;Stavroula Kanoni;Nigel W. Rayner;Ozvan Bocher;Ana Luiza Arruda;Kyuto Sonehara;Shinichi Namba;Simon S. K. Lee;Michael H. Preuss;Lauren E. Petty;Philip Schroeder;Brett Vanderwerff;Mart Kals;Fiona Bragg;Kuang Lin;Xiuqing Guo;Weihua Zhang;Jie Yao;Young Jin Kim;Mariaelisa Graff;Fumihiko Takeuchi;Jana Nano;Amel Lamri;Masahiro Nakatochi;Sanghoon Moon;Robert A. Scott;James P. Cook;Jung-Jin Lee;Ian Pan;Daniel Taliun;Esteban J. Parra;Jin-Fang Chai;Lawrence F. Bielak;Yasuharu Tabara;Yang Hai;Gudmar Thorleifsson;Niels Grarup;Tamar Sofer;Matthias Wuttke;Chloé Sarnowski;Christian Gieger;Darryl Nousome;Stella Trompet;Soo-Heon Kwak;Jirong Long;Meng Sun;Lin Tong;Wei-Min Chen;Suraj S. Nongmaithem;Raymond Noordam;Victor J. Y. Lim;Claudia H. T. Tam;Yoonjung Yoonie Joo;Chien-Hsiun Chen;Laura M. Raffield;Bram Peter Prins;Aude Nicolas;Lisa R. Yanek;Guanjie Chen;Jennifer A. Brody;Edmond Kabagambe;Ping An;Anny H. Xiang;Hyeok Sun Choi;Brian E. Cade;Jingyi Tan;K. Alaine Broadaway;Alice Williamson;Zoha Kamali;Jinrui Cui;Manonanthini Thangam;Linda S. Adair;Adebowale Adeyemo;Carlos A. Aguilar-Salinas;Tarunveer S. Ahluwalia;Sonia S. Anand;Alain Bertoni;Jette Bork-Jensen;Ivan Brandslund;Thomas A. Buchanan;Charles F. Burant;Adam S. Butterworth;Mickaël Canouil;Juliana C. N. Chan;Li-Ching Chang;Miao-Li Chee;Ji Chen;Shyh-Huei Chen;Yuan-Tsong Chen;Zhengming Chen;Lee-Ming Chuang;Mary Cushman;John Danesh;Swapan K. Das;H. Janaka de Silva;George Dedoussis;Latchezar Dimitrov;Ayo P. Doumatey;Shufa Du;Qing Duan;Kai-Uwe Eckardt;Leslie S. Emery;Daniel S. Evans;Michele K. Evans;Krista Fischer;James S. Floyd;Ian Ford;Oscar H. Franco;Timothy M. Frayling;Barry I. Freedman;Pauline Genter;Hertzel C. Gerstein;Vilmantas Giedraitis;Clicerio González-Villalpando;Maria Elena González-Villalpando;Penny Gordon-Larsen;Myron Gross;Lindsay A. Guare;Sophie Hackinger;Liisa Hakaste;Sohee Han;Andrew T. Hattersley;Christian Herder;Momoko Horikoshi;Annie-Green Howard;Willa Hsueh;Mengna Huang;Wei Huang;Yi-Jen Hung;Mi Yeong Hwang;Chii-Min Hwu;Sahoko Ichihara;Mohammad Arfan Ikram;Martin Ingelsson;Md. Tariqul Islam;Masato Isono;Hye-Mi Jang;Farzana Jasmine;Guozhi Jiang;Jost B. Jonas;Torben Jørgensen;Frederick K. Kamanu;Fouad R. Kandeel;Anuradhani Kasturiratne;Tomohiro Katsuya;Varinderpal Kaur;Takahisa Kawaguchi;Jacob M. Keaton;Abel N. Kho;Chiea-Chuen Khor;Muhammad G. Kibriya;Duk-Hwan Kim;Florian Kronenberg;Johanna Kuusisto;Kristi Läll;Leslie A. Lange;Kyung Min Lee;Myung-Shik Lee;Nanette R. Lee;Aaron Leong;Liming Li;Yun Li;Ruifang Li-Gao;Symen Ligthart;Cecilia M. Lindgren;Allan Linneberg;Ching-Ti Liu;Jianjun Liu;Adam E. Locke;Tin Louie;Jian’an Luan;Andrea O. Luk;Xi Luo;Jun Lv;Julie A. Lynch;Valeriya Lyssenko;Shiro Maeda;Vasiliki Mamakou;Sohail Rafik Mansuri;Koichi Matsuda;Thomas Meitinger;Olle Melander;Andres Metspalu;Huan Mo;Andrew D. Morris;Filipe A. Moura;Jerry L. Nadler;Michael A. Nalls;Uma Nayak;Ioanna Ntalla;Yukinori Okada;Lorena Orozco;Sanjay R. Patel;Snehal Patil;Pei Pei;Mark A. Pereira;Annette Peters;Fraser J. Pirie;Hannah G. Polikowsky;Bianca Porneala;Gauri Prasad;Laura J. Rasmussen-Torvik;Alexander P. Reiner;Michael Roden;Rebecca Rohde;Katheryn Roll;Charumathi Sabanayagam;Kevin Sandow;Alagu Sankareswaran;Naveed Sattar;Sebastian Schönherr;Mohammad Shahriar;Botong Shen;Jinxiu Shi;Dong Mun Shin;Nobuhiro Shojima;Jennifer A. Smith;Wing Yee So;Alena Stančáková;Valgerdur Steinthorsdottir;Adrienne M. Stilp;Konstantin Strauch;Kent D. Taylor;Barbara Thorand;Unnur Thorsteinsdottir;Brian Tomlinson;Tam C. Tran;Fuu-Jen Tsai;Jaakko Tuomilehto;Teresa Tusie-Luna;Miriam S. Udler;Adan Valladares-Salgado;Rob M. van Dam;Jan B. van Klinken;Rohit Varma;Niels Wacher-Rodarte;Eleanor Wheeler;Ananda R. Wickremasinghe;Ko Willems van Dijk;Daniel R. Witte;Chittaranjan S. Yajnik;Ken Yamamoto;Kenichi Yamamoto;Kyungheon Yoon;Canqing Yu;Jian-Min Yuan;Salim Yusuf;Matthew Zawistowski;Liang Zhang;Wei Zheng;Leslie J. Raffel;Michiya Igase;Eli Ipp;Susan Redline;Yoon Shin Cho;Lars Lind;Michael A. Province;Myriam Fornage;Craig L. Hanis;Erik Ingelsson;Alan B. Zonderman;Bruce M. Psaty;Ya-Xing Wang;Charles N. Rotimi;Diane M. Becker;Fumihiko Matsuda;Yongmei Liu;Mitsuhiro Yokota;Sharon L. R. Kardia;Patricia A. Peyser;James S. Pankow;James C. Engert;Amélie Bonnefond;Philippe Froguel;James G. Wilson;Wayne H. H. Sheu;Jer-Yuarn Wu;M. Geoffrey Hayes;Ronald C. W. Ma;Tien-Yin Wong;Dennis O. Mook-Kanamori;Tiinamaija Tuomi;Giriraj R. Chandak;Francis S. Collins;Dwaipayan Bharadwaj;Guillaume Paré;Michèle M. Sale;Habibul Ahsan;Ayesha A. Motala;Xiao-Ou Shu;Kyong-Soo Park;J. Wouter Jukema;Miguel Cruz;Yii-Der Ida Chen;Stephen S. Rich;Roberta McKean-Cowdin;Harald Grallert;Ching-Yu Cheng;Mohsen Ghanbari;E-Shyong Tai;Josee Dupuis;Norihiro Kato;Markku Laakso;Anna Köttgen;Woon-Puay Koh;Donald W. Bowden;Colin N. A. Palmer;Jaspal S. Kooner;Charles Kooperberg;Simin Liu;Kari E. North;Danish Saleheen;Torben Hansen;Oluf Pedersen;Nicholas J. Wareham;Juyoung Lee;Bong-Jo Kim;Iona Y. Millwood;Robin G. Walters;Kari Stefansson;Emma Ahlqvist;Mark O. Goodarzi;Karen L. Mohlke;Claudia Langenberg;Christopher A. Haiman;Ruth J. F. Loos;Jose C. Florez;Daniel J. Rader;Marylyn D. Ritchie;Sebastian Zöllner;Reedik Mägi;Nicholas A. Marston;Christian T. Ruff;David A. van Heel;Sarah Finer;Joshua C. Denny;Toshimasa Yamauchi;Takashi Kadowaki;John C. Chambers;Maggie C. Y. Ng;Xueling Sim;Jennifer E. Below;Philip S. Tsao;Kyong-Mi Chang;Mark I. McCarthy;James B. Meigs;Anubha Mahajan;Cassandra N. Spracklen;Josep M. Mercader;Michael Boehnke;Jerome I. Rotter;Marijana Vujkovic;Benjamin F. Voight;Andrew P. Morris;Eleftheria Zeggini - 通讯作者:
Eleftheria Zeggini
Computable phenotypes to identify respiratory viral infections in the All of Us research program
在“我们所有人”研究计划中用于识别呼吸道病毒感染的可计算表型
- DOI:
10.1038/s41598-025-02183-9 - 发表时间:
2025-05-28 - 期刊:
- 影响因子:3.900
- 作者:
Bennett J. Waxse;Fausto Andres Bustos Carrillo;Tam C. Tran;Huan Mo;Emily E. Ricotta;Joshua C. Denny - 通讯作者:
Joshua C. Denny
Genome-wide meta-analysis identifies novel risk loci for uterine fibroids within and across multiple ancestry groups
全基因组荟萃分析确定了多个种族群体内部和之间子宫肌瘤的新风险位点
- DOI:
10.1038/s41467-025-57483-5 - 发表时间:
2025-03-06 - 期刊:
- 影响因子:15.700
- 作者:
Jeewoo Kim;Ariel Williams;Hannah Noh;Elizabeth A. Jasper;Sarah H. Jones;James A. Jaworski;Megan M. Shuey;Edward A. Ruiz-Narváez;Lauren A. Wise;Julie R. Palmer;John Connolly;Jacob M. Keaton;Joshua C. Denny;Atlas Khan;Mohammad A. Abbass;Laura J. Rasmussen-Torvik;Leah C. Kottyan;Purnima Madhivanan;Karl Krupp;Wei-Qi Wei;Todd L. Edwards;Digna R. Velez Edwards;Jacklyn N. Hellwege - 通讯作者:
Jacklyn N. Hellwege
Joshua C. Denny的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua C. Denny', 18)}}的其他基金
VGM: Vanderbilt Genomic Medicine Training Program
VGM:范德比尔特基因组医学培训计划
- 批准号:
9309008 - 财政年份:2016
- 资助金额:
$ 64.86万 - 项目类别:
VGER, the Vanderbilt Genome-Electronic Records Project
VGER,范德比尔特基因组电子记录项目
- 批准号:
9894963 - 财政年份:2015
- 资助金额:
$ 64.86万 - 项目类别:
VGER, the Vanderbilt Genome-Electronic Records Project
VGER,范德比尔特基因组电子记录项目
- 批准号:
9134824 - 财政年份:2015
- 资助金额:
$ 64.86万 - 项目类别:
VGER, the Vanderbilt Genome-Electronic Records Project
VGER,范德比尔特基因组电子记录项目
- 批准号:
9283258 - 财政年份:2015
- 资助金额:
$ 64.86万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 64.86万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 64.86万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 64.86万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 64.86万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 64.86万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 64.86万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 64.86万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 64.86万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 64.86万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 64.86万 - 项目类别:
Continuing Grant