Data and Research Support Center

数据与研究支持中心

基本信息

  • 批准号:
    9312321
  • 负责人:
  • 金额:
    $ 3184.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-06 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

PLEDGE Abstract The Precision Medicine Initiative’s (PMI’s) overarching goal is to transform our understanding of the factors that contribute to health and disease, and ultimately, to leverage this understanding to information how we prevent and treat disease. This bold objective will be operationalized in the creation of a longitudinal cohort of 1 million individuals. The PMI’s coordinating center (CC) (called Partnership in Learning around Engagement, Data, Genomics, and Environment, or “PLEDGE”) operationalizes this vision, serving as a hub for the PMI Network leading the optimization of participant engagement strategies, robust data infrastructure, facilitative support of researchers, coordination and communication between the diverse stakeholders of the Network, and responsibility for enrollment of the Cohort’s direct volunteers. PLEDGE’s goals are illustrated by four proposed specific aims: 1) Support the network and its Steering Committee to establish, implement, monitor and reach its programmatic goals. Serve as a visible national home for the PMI, representing its mission and value to participants and to health; provide a ‘one stop shop’ storefront for all needs, inquiries, and provision of data access for high caliber research; 2) Enroll a diverse group of highly engaged direct volunteers without sacrificing inclusiveness for quantity; 3) Harmonize technical practices among Healthcare Provider Organizations including data standards, elements, and models, while nurturing innovation from network sites when conformity is not beneficial. Apply stringent privacy and security safeguards; and finally, 4) Generate support for PMI beyond the network’s personnel to continuously incorporate new knowledge and tools, by deploying innovative contests, crowd sourcing, and matchmaking services.
PLEDGE摘要 精准医学倡议(PMI)的首要目标是改变我们对影响健康的因素的理解, 有助于健康和疾病,并最终利用这种理解来了解我们如何预防 治疗疾病这一大胆的目标将通过建立一个100万人的纵向队列来实现 个体PMI的协调中心(CC)(称为参与、数据、 基因组学和环境,或“PLEDGE”)实现了这一愿景,作为PMI网络的中心 领导参与者参与战略的优化,强大的数据基础设施, 研究人员,网络不同利益攸关方之间的协调和沟通,以及 负责招募队列的直接志愿者。该伙伴关系的目标体现在四个拟议目标中: 具体目标:1)支持网络及其指导委员会建立、执行、监测和实现其 方案目标。作为PMI的可见的国家家园,代表其使命和价值, 参与者和健康;为所有需求、查询和提供数据提供“一站式”店面 获得高水平研究的机会; 2)招募多元化的高度参与的直接志愿者群体,而无需牺牲 数量的包容性; 3)协调医疗保健提供者组织之间的技术实践,包括 数据标准、元素和模型,同时在不符合标准的情况下培养网络站点的创新 有利于应用严格的隐私和安全保护措施;最后,4)为PMI提供超越 网络的人员不断纳入新的知识和工具,通过部署创新的比赛, 众包和婚介服务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joshua C. Denny其他文献

ADT-2016-772-ver9-Pulley_4P 113..119
ADT-2016-772-ver9-Puley_4P 113..119
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jill M. Pulley;Jana K. Shirey;Robert R. Lavieri;Rebecca N. Jerome;Nicole M. Zaleski;David M. Aronoff;Lisa Bastarache;Xinnan Niu;Kenneth J. Holroyd;Dan M. Roden;Eric P. Skaar;Colleen M. Niswender;Lawrence J. Marnett;Craig W. Lindsley;Leeland B. Ekstrom;Alan R. Bentley;Gordon R. Bernard;Charles C. Hong;Joshua C. Denny
  • 通讯作者:
    Joshua C. Denny
A High-Throughput Genetic Analysis of Common Drug Allergy Labels Using Data from a Large Biobank
  • DOI:
    10.1016/j.jaci.2017.12.937
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Elizabeth J. Phillips;Wei-Qi Wei;Christian Michael Shaffer;QiPing Feng;Cosby A. Stone;C. Michael Stein;Dan M. Roden;Joshua C. Denny
  • 通讯作者:
    Joshua C. Denny
Genetic drivers of heterogeneity in type 2 diabetes pathophysiology
2 型糖尿病病理生理学中异质性的遗传驱动因素
  • DOI:
    10.1038/s41586-024-07019-6
  • 发表时间:
    2024-02-19
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Ken Suzuki;Konstantinos Hatzikotoulas;Lorraine Southam;Henry J. Taylor;Xianyong Yin;Kim M. Lorenz;Ravi Mandla;Alicia Huerta-Chagoya;Giorgio E. M. Melloni;Stavroula Kanoni;Nigel W. Rayner;Ozvan Bocher;Ana Luiza Arruda;Kyuto Sonehara;Shinichi Namba;Simon S. K. Lee;Michael H. Preuss;Lauren E. Petty;Philip Schroeder;Brett Vanderwerff;Mart Kals;Fiona Bragg;Kuang Lin;Xiuqing Guo;Weihua Zhang;Jie Yao;Young Jin Kim;Mariaelisa Graff;Fumihiko Takeuchi;Jana Nano;Amel Lamri;Masahiro Nakatochi;Sanghoon Moon;Robert A. Scott;James P. Cook;Jung-Jin Lee;Ian Pan;Daniel Taliun;Esteban J. Parra;Jin-Fang Chai;Lawrence F. Bielak;Yasuharu Tabara;Yang Hai;Gudmar Thorleifsson;Niels Grarup;Tamar Sofer;Matthias Wuttke;Chloé Sarnowski;Christian Gieger;Darryl Nousome;Stella Trompet;Soo-Heon Kwak;Jirong Long;Meng Sun;Lin Tong;Wei-Min Chen;Suraj S. Nongmaithem;Raymond Noordam;Victor J. Y. Lim;Claudia H. T. Tam;Yoonjung Yoonie Joo;Chien-Hsiun Chen;Laura M. Raffield;Bram Peter Prins;Aude Nicolas;Lisa R. Yanek;Guanjie Chen;Jennifer A. Brody;Edmond Kabagambe;Ping An;Anny H. Xiang;Hyeok Sun Choi;Brian E. Cade;Jingyi Tan;K. Alaine Broadaway;Alice Williamson;Zoha Kamali;Jinrui Cui;Manonanthini Thangam;Linda S. Adair;Adebowale Adeyemo;Carlos A. Aguilar-Salinas;Tarunveer S. Ahluwalia;Sonia S. Anand;Alain Bertoni;Jette Bork-Jensen;Ivan Brandslund;Thomas A. Buchanan;Charles F. Burant;Adam S. Butterworth;Mickaël Canouil;Juliana C. N. Chan;Li-Ching Chang;Miao-Li Chee;Ji Chen;Shyh-Huei Chen;Yuan-Tsong Chen;Zhengming Chen;Lee-Ming Chuang;Mary Cushman;John Danesh;Swapan K. Das;H. Janaka de Silva;George Dedoussis;Latchezar Dimitrov;Ayo P. Doumatey;Shufa Du;Qing Duan;Kai-Uwe Eckardt;Leslie S. Emery;Daniel S. Evans;Michele K. Evans;Krista Fischer;James S. Floyd;Ian Ford;Oscar H. Franco;Timothy M. Frayling;Barry I. Freedman;Pauline Genter;Hertzel C. Gerstein;Vilmantas Giedraitis;Clicerio González-Villalpando;Maria Elena González-Villalpando;Penny Gordon-Larsen;Myron Gross;Lindsay A. Guare;Sophie Hackinger;Liisa Hakaste;Sohee Han;Andrew T. Hattersley;Christian Herder;Momoko Horikoshi;Annie-Green Howard;Willa Hsueh;Mengna Huang;Wei Huang;Yi-Jen Hung;Mi Yeong Hwang;Chii-Min Hwu;Sahoko Ichihara;Mohammad Arfan Ikram;Martin Ingelsson;Md. Tariqul Islam;Masato Isono;Hye-Mi Jang;Farzana Jasmine;Guozhi Jiang;Jost B. Jonas;Torben Jørgensen;Frederick K. Kamanu;Fouad R. Kandeel;Anuradhani Kasturiratne;Tomohiro Katsuya;Varinderpal Kaur;Takahisa Kawaguchi;Jacob M. Keaton;Abel N. Kho;Chiea-Chuen Khor;Muhammad G. Kibriya;Duk-Hwan Kim;Florian Kronenberg;Johanna Kuusisto;Kristi Läll;Leslie A. Lange;Kyung Min Lee;Myung-Shik Lee;Nanette R. Lee;Aaron Leong;Liming Li;Yun Li;Ruifang Li-Gao;Symen Ligthart;Cecilia M. Lindgren;Allan Linneberg;Ching-Ti Liu;Jianjun Liu;Adam E. Locke;Tin Louie;Jian’an Luan;Andrea O. Luk;Xi Luo;Jun Lv;Julie A. Lynch;Valeriya Lyssenko;Shiro Maeda;Vasiliki Mamakou;Sohail Rafik Mansuri;Koichi Matsuda;Thomas Meitinger;Olle Melander;Andres Metspalu;Huan Mo;Andrew D. Morris;Filipe A. Moura;Jerry L. Nadler;Michael A. Nalls;Uma Nayak;Ioanna Ntalla;Yukinori Okada;Lorena Orozco;Sanjay R. Patel;Snehal Patil;Pei Pei;Mark A. Pereira;Annette Peters;Fraser J. Pirie;Hannah G. Polikowsky;Bianca Porneala;Gauri Prasad;Laura J. Rasmussen-Torvik;Alexander P. Reiner;Michael Roden;Rebecca Rohde;Katheryn Roll;Charumathi Sabanayagam;Kevin Sandow;Alagu Sankareswaran;Naveed Sattar;Sebastian Schönherr;Mohammad Shahriar;Botong Shen;Jinxiu Shi;Dong Mun Shin;Nobuhiro Shojima;Jennifer A. Smith;Wing Yee So;Alena Stančáková;Valgerdur Steinthorsdottir;Adrienne M. Stilp;Konstantin Strauch;Kent D. Taylor;Barbara Thorand;Unnur Thorsteinsdottir;Brian Tomlinson;Tam C. Tran;Fuu-Jen Tsai;Jaakko Tuomilehto;Teresa Tusie-Luna;Miriam S. Udler;Adan Valladares-Salgado;Rob M. van Dam;Jan B. van Klinken;Rohit Varma;Niels Wacher-Rodarte;Eleanor Wheeler;Ananda R. Wickremasinghe;Ko Willems van Dijk;Daniel R. Witte;Chittaranjan S. Yajnik;Ken Yamamoto;Kenichi Yamamoto;Kyungheon Yoon;Canqing Yu;Jian-Min Yuan;Salim Yusuf;Matthew Zawistowski;Liang Zhang;Wei Zheng;Leslie J. Raffel;Michiya Igase;Eli Ipp;Susan Redline;Yoon Shin Cho;Lars Lind;Michael A. Province;Myriam Fornage;Craig L. Hanis;Erik Ingelsson;Alan B. Zonderman;Bruce M. Psaty;Ya-Xing Wang;Charles N. Rotimi;Diane M. Becker;Fumihiko Matsuda;Yongmei Liu;Mitsuhiro Yokota;Sharon L. R. Kardia;Patricia A. Peyser;James S. Pankow;James C. Engert;Amélie Bonnefond;Philippe Froguel;James G. Wilson;Wayne H. H. Sheu;Jer-Yuarn Wu;M. Geoffrey Hayes;Ronald C. W. Ma;Tien-Yin Wong;Dennis O. Mook-Kanamori;Tiinamaija Tuomi;Giriraj R. Chandak;Francis S. Collins;Dwaipayan Bharadwaj;Guillaume Paré;Michèle M. Sale;Habibul Ahsan;Ayesha A. Motala;Xiao-Ou Shu;Kyong-Soo Park;J. Wouter Jukema;Miguel Cruz;Yii-Der Ida Chen;Stephen S. Rich;Roberta McKean-Cowdin;Harald Grallert;Ching-Yu Cheng;Mohsen Ghanbari;E-Shyong Tai;Josee Dupuis;Norihiro Kato;Markku Laakso;Anna Köttgen;Woon-Puay Koh;Donald W. Bowden;Colin N. A. Palmer;Jaspal S. Kooner;Charles Kooperberg;Simin Liu;Kari E. North;Danish Saleheen;Torben Hansen;Oluf Pedersen;Nicholas J. Wareham;Juyoung Lee;Bong-Jo Kim;Iona Y. Millwood;Robin G. Walters;Kari Stefansson;Emma Ahlqvist;Mark O. Goodarzi;Karen L. Mohlke;Claudia Langenberg;Christopher A. Haiman;Ruth J. F. Loos;Jose C. Florez;Daniel J. Rader;Marylyn D. Ritchie;Sebastian Zöllner;Reedik Mägi;Nicholas A. Marston;Christian T. Ruff;David A. van Heel;Sarah Finer;Joshua C. Denny;Toshimasa Yamauchi;Takashi Kadowaki;John C. Chambers;Maggie C. Y. Ng;Xueling Sim;Jennifer E. Below;Philip S. Tsao;Kyong-Mi Chang;Mark I. McCarthy;James B. Meigs;Anubha Mahajan;Cassandra N. Spracklen;Josep M. Mercader;Michael Boehnke;Jerome I. Rotter;Marijana Vujkovic;Benjamin F. Voight;Andrew P. Morris;Eleftheria Zeggini
  • 通讯作者:
    Eleftheria Zeggini
Computable phenotypes to identify respiratory viral infections in the All of Us research program
在“我们所有人”研究计划中用于识别呼吸道病毒感染的可计算表型
  • DOI:
    10.1038/s41598-025-02183-9
  • 发表时间:
    2025-05-28
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Bennett J. Waxse;Fausto Andres Bustos Carrillo;Tam C. Tran;Huan Mo;Emily E. Ricotta;Joshua C. Denny
  • 通讯作者:
    Joshua C. Denny
Genome-wide meta-analysis identifies novel risk loci for uterine fibroids within and across multiple ancestry groups
全基因组荟萃分析确定了多个种族群体内部和之间子宫肌瘤的新风险位点
  • DOI:
    10.1038/s41467-025-57483-5
  • 发表时间:
    2025-03-06
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Jeewoo Kim;Ariel Williams;Hannah Noh;Elizabeth A. Jasper;Sarah H. Jones;James A. Jaworski;Megan M. Shuey;Edward A. Ruiz-Narváez;Lauren A. Wise;Julie R. Palmer;John Connolly;Jacob M. Keaton;Joshua C. Denny;Atlas Khan;Mohammad A. Abbass;Laura J. Rasmussen-Torvik;Leah C. Kottyan;Purnima Madhivanan;Karl Krupp;Wei-Qi Wei;Todd L. Edwards;Digna R. Velez Edwards;Jacklyn N. Hellwege
  • 通讯作者:
    Jacklyn N. Hellwege

Joshua C. Denny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joshua C. Denny', 18)}}的其他基金

Data and Research Support Center
数据与研究支持中心
  • 批准号:
    9229610
  • 财政年份:
    2016
  • 资助金额:
    $ 3184.63万
  • 项目类别:
VGM: Vanderbilt Genomic Medicine Training Program
VGM:范德比尔特基因组医学培训计划
  • 批准号:
    9309008
  • 财政年份:
    2016
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Bio Repository Core
生物储存库核心
  • 批准号:
    9146144
  • 财政年份:
    2016
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Improving Prediction of Drug Action
改善药物作用的预测
  • 批准号:
    9262466
  • 财政年份:
    2015
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Improving Prediction of Drug Action
改善药物作用的预测
  • 批准号:
    9100795
  • 财政年份:
    2015
  • 资助金额:
    $ 3184.63万
  • 项目类别:
VGER, the Vanderbilt Genome-Electronic Records Project
VGER,范德比尔特基因组电子记录项目
  • 批准号:
    9894963
  • 财政年份:
    2015
  • 资助金额:
    $ 3184.63万
  • 项目类别:
VGER, the Vanderbilt Genome-Electronic Records Project
VGER,范德比尔特基因组电子记录项目
  • 批准号:
    9134824
  • 财政年份:
    2015
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Improving Prediction of Drug Action
改善药物作用的预测
  • 批准号:
    9194462
  • 财政年份:
    2015
  • 资助金额:
    $ 3184.63万
  • 项目类别:
VGER, the Vanderbilt Genome-Electronic Records Project
VGER,范德比尔特基因组电子记录项目
  • 批准号:
    9283258
  • 财政年份:
    2015
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Integrated, Individualized, Intelligent Prescribing (I3P)
集成、个体化、智能处方(I3P)
  • 批准号:
    8700883
  • 财政年份:
    2014
  • 资助金额:
    $ 3184.63万
  • 项目类别:

相似海外基金

EFRI BRAID: Brain-inspired Algorithms for Autonomous Robots (BAAR)
EFRI BRAID:自主机器人的类脑算法 (BAAR)
  • 批准号:
    2318065
  • 财政年份:
    2023
  • 资助金额:
    $ 3184.63万
  • 项目类别:
    Standard Grant
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
  • 批准号:
    10391136
  • 财政年份:
    2022
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
  • 批准号:
    10548825
  • 财政年份:
    2022
  • 资助金额:
    $ 3184.63万
  • 项目类别:
NCS-FO: Integrated neuroengineering of brain-inspired algorithms for parsing realistic environments
NCS-FO:用于解析现实环境的受大脑启发的算法的集成神经工程
  • 批准号:
    2123862
  • 财政年份:
    2021
  • 资助金额:
    $ 3184.63万
  • 项目类别:
    Standard Grant
Personalized anesthetic brain monitoring: Developing novel systems, sensors, and algorithms for aging, dementia, and Alzheimers disease patients
个性化麻醉大脑监测:为衰老、痴呆和阿尔茨海默病患者开发新型系统、传感器和算法
  • 批准号:
    10360566
  • 财政年份:
    2021
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
  • 批准号:
    10263607
  • 财政年份:
    2021
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Personalized anesthetic brain monitoring: Developing novel systems, sensors, and algorithms for aging, dementia, and Alzheimers disease patients
个性化麻醉大脑监测:为衰老、痴呆和阿尔茨海默病患者开发新型系统、传感器和算法
  • 批准号:
    10303200
  • 财政年份:
    2021
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
  • 批准号:
    10366006
  • 财政年份:
    2020
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Informatics Algorithms for Genomic Analysis of Brain Imaging Data
用于脑成像数据基因组分析的信息学算法
  • 批准号:
    10206271
  • 财政年份:
    2020
  • 资助金额:
    $ 3184.63万
  • 项目类别:
Personalized anesthetic brain monitoring: Developing novel systems, sensors, and algorithms for aging, dementia, and Alzheimers disease patients
个性化麻醉大脑监测:为衰老、痴呆和阿尔茨海默病患者开发新型系统、传感器和算法
  • 批准号:
    9909360
  • 财政年份:
    2020
  • 资助金额:
    $ 3184.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了