Development of Software for Automated Quantification of Brain MR Images
脑 MR 图像自动量化软件的开发
基本信息
- 批准号:8832164
- 负责人:
- 金额:$ 52.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlgorithmsAnatomyArchitectureAtlasesAutomationBedsBrainBrain DiseasesClinicalClinical DataCollaborationsCommunitiesComputer softwareDataDatabasesDevelopmentDiffusion Magnetic Resonance ImagingDimensionsEquipment and supply inventoriesFeesImageImage AnalysisImageryLocationMagnetic Resonance ImagingManualsModelingMorusOnline SystemsOntologyOperating SystemPathologyPatientsPerformancePhasePhenotypePicture Archiving and Communication SystemPopulationProbabilityProtocols documentationReproducibilityResearchResolutionResourcesRunningScienceServicesSourceStructureSystemTechnologyTestingTimeUniversitiesVendorWeightbaseclinical practicecloud basedcomputer clustercomputerized data processingcomputing resourcescostflexibilityimprovednovelparallel processingphase 1 studyphase 2 studyprogramspublic health relevancesoftware developmenttoolweb based interfaceweb interface
项目摘要
DESCRIPTION (provided by applicant): In this project, we will develop a commercial resource for the automated analysis of brain anatomy, based on MRI. This product is based on the whole-brain parcellation algorithm with the following unique features. First, it is based on a cutting-edge multi-atlas approach, in which we will incorporate rich atlas resources from Dr. Mori's lab at the Johns Hopkins University (JHU). Second, our multi-atlas approach is based on advanced diffeomorphic image transformation and multi-atlas probability fusion, recently developed by Dr. Miller at JHU. These CPU-intensive algorithms, combined with a large atlas inventory, require highly parallelized computational resources. We, therefore, will develop a fully
portable and scalable cloud-based architecture, such that many users can have access at minimum costs. Third, we will develop a flexible architecture to define brain structures with multiple anatomical criteria, providing a very unique multi-granularity analysis, which provides an anatomy-centric and intuitive interface for clinical use. Fourth, we extend the analysis to diffusion tensor imaging (DTI) by incorporating a unique approach to multi-contrast image transformation and probability fusion. Last but not least, these algorithms can convert a set of multiple MR images to a quantitative and standardized Anatomical Matrix, which allows us to perform image data structurization, searching, and individualized analysis of anatomical phenotypes. Aim 1: To establish a cloud-based servicing architecture: We will develop a scalable and portable architecture for cloud-based computation. Parallel processing is required to achieve fast computation for the multi-atlas calculations. The algorithms accept DICOM data from four major vendors and apply a parcellation tool that identifies 254 brain structures. Aim 2: To establish a web-based interface for non-corporate users: To make our advanced image analysis tools widely available for research communities, we will create a web-based interface and provide the service at a minimum cost ($20/data). Aim 3: To implement a data visualization interface with ontology-based multi-granularity analysis: Our image analysis pipeline is a departure from conventional voxel-based automated analysis. Our structure-based analysis reduces the anatomical dimension to much lower scales. However, there are multiple ways to perform the structure-based information reduction. The ontology-based analysis provides a novel way to perform hierarchical anatomical interpretation of the structure-based analysis. Aim 4: To increase the number of atlases and cases in the database for interpretation support: Through the collaboration with JHU, we have access to a large inventory of research and clinical data, including controls and various patient groups. To create reference data, we will process these data and establish a background database, against which users can compare and interpret their data.
描述(由申请人提供):在这个项目中,我们将开发一个基于MRI的脑解剖自动分析的商业资源。本产品基于全脑分割算法,具有以下独特之处。首先,它基于一种尖端的多图谱方法,在这种方法中,我们将结合来自约翰霍普金斯大学(JHU) Mori博士实验室的丰富图谱资源。其次,我们的多图谱方法基于JHU的Miller博士最近开发的先进的微分纯图像变换和多图谱概率融合。这些cpu密集型算法,加上庞大的地图集库存,需要高度并行化的计算资源。因此,我们将充分发展
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
hangyi jiang其他文献
hangyi jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('hangyi jiang', 18)}}的其他基金
Development of Electronic Multi-Scale Atlas of Human Brain for iPad
iPad 版人脑电子多尺度图谱的开发
- 批准号:
8449765 - 财政年份:2013
- 资助金额:
$ 52.48万 - 项目类别:
Development of Software for Automated Quantification of Brain MR Images
脑 MR 图像自动量化软件的开发
- 批准号:
8934185 - 财政年份:2012
- 资助金额:
$ 52.48万 - 项目类别:
Development of Software for Automated Quantification of Brain MR Images
脑 MR 图像自动量化软件的开发
- 批准号:
8313127 - 财政年份:2012
- 资助金额:
$ 52.48万 - 项目类别:
Development of 3D electronic atlases of deveoping mouse brains
开发小鼠大脑发育的 3D 电子图谱
- 批准号:
8248494 - 财政年份:2012
- 资助金额:
$ 52.48万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 52.48万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 52.48万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 52.48万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 52.48万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 52.48万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 52.48万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 52.48万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 52.48万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 52.48万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 52.48万 - 项目类别:
Continuing Grant














{{item.name}}会员




