Directed In Vivo Differentiation of Neural Stem Cells for Repair of Brain Lesion
神经干细胞体内定向分化修复脑损伤
基本信息
- 批准号:8824696
- 负责人:
- 金额:$ 20.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedBrainCell Differentiation processCell SurvivalCell TherapyCell TransplantationCell TransplantsCellsCephalicClinicalCommitCoupledEffectivenessEngraftmentEnvironmentGenetic TranscriptionGrantGrowth FactorHumanHyaluronic AcidHydrogelsImplantIn SituIn VitroInjectableInjuryLesionMediatingMethodsModelingNatural regenerationNeurodegenerative DisordersNeuronal DifferentiationNeuronsOligodendrogliaOutcomePatientsPlasmidsProductionRattusRecovery of FunctionSiteStagingStem cell transplantStem cellsTestingTissuesTranscriptional ActivationTranscriptional RegulationTransfectionTranslationsTransplantationTransplantation ConditioningTraumatic Brain InjuryViralViral Vectorangiogenesisbasebrain repairbrain tissuecell typecontrolled cortical impactimprovedin vivoinduced pluripotent stem cellinnovationmyelinationnanoparticlenerve stem cellnervous system disordernovel strategiesoligodendrocyte lineagepublic health relevancerelating to nervous systemsmall moleculestemstem cell differentiationsuccesstissue regenerationtissue repairtranscription factortransgene expression
项目摘要
DESCRIPTION: Transplantation of neural stem or progenitor cells has been increasing proposed as a promising strategy to promote tissue regeneration and reconstruct the lesion cavity of TBI. However, poor control over the differentiation of human neural stem/progenitor cells (hNSCs) following transplantation, low survival and integration of the transplanted cells at the lesion site has severely limited the success of cell-based therapies. The objective of this study is to develop a nanoparticle-mediated transcription activation approach to direct the differentiation of hNSCs in vivo into functional neurons and oligodendrocytes. This new method will afford better control and higher efficiency of the survival, differentiation, maturation, and integration of the functional cells in vivo. We will demonstrate the advantages of this approach by transplanting transcriptionally activated hNSCs in a tailored hyaluronic acid hydrogel into a rat model of traumatic brain injury (TBI), and by examining cell survival, differentiation and integration of the transplanted cells, and tissue regeneration outcomes at the lesion site. Based on recent findings that over-expression of key transcriptional factors by viral transfection induces rapid and efficient production of functional neurons, and biodegradable nanoparticle transfection method capable of mediating efficient transgene expression in stem and progenitor cells, we plan to test the hypothesis that transient expression of stage-specific transcriptional factor neurogenin 2 (Ngn2) and oligodendrocyte transcription factor Olig2 in human induced pluripotent stem cell (hiPSC)-derived NSCs prior to transplantation will promote their in vivo differentiation towards functional neurons and oligodendrocytes, respectively. We will pursue the following specific aims in this exploratory grant: (1) to establish a highly effective nanoparticles for transfection of hiPSC-derived NSCs by plasmids encoding transcription factor Ngn2 and Olig2, respectively, and to investigate the effect of Ngn2 and Olig2 expression on neuronal and oligodendrocyte differentiation, respectively; (2) to demonstrate the directed differentiation of Ngn2-transfected and Olig2-transfected hNSCs derived from hiPSCs in vivo, and the advantage of hydrogel delivery in promoting the survival, differentiation, and maturation of the transfected cells and in enhancing tissue regeneration in a rat TBI model. This study will not only advance our understanding of transcription factor activation in regulating the survival, differentiation, and maturation of transplanted hiPSC-derived NSCs in vivo, but also offer new strategies for brain tissue regeneration in treating a wide range of traumatic injuries and neurodegenerative diseases. This new nanoparticle method together with the in situ forming hydrogels with defined compositions is highly desirable for clinical translation.
产品说明:神经干细胞或神经祖细胞移植作为一种促进组织再生和重建创伤性脑损伤的有希望的策略,越来越多的人提出来。然而,移植后对人神经干/祖细胞(hNSCs)分化的控制差、移植细胞在病变部位的低存活率和整合严重限制了基于细胞的治疗的成功。本研究的目的是开发一种纳米颗粒介导的转录激活方法,以指导hNSCs在体内分化为功能性神经元和少突胶质细胞。这种新的方法将提供更好的控制和更高的效率的存活,分化,成熟和整合的功能细胞在体内。我们将证明这种方法的优点,通过移植转录激活的hNSCs在定制的透明质酸水凝胶到创伤性脑损伤(TBI)的大鼠模型,并通过检查细胞的存活,分化和整合的移植细胞,和组织再生的结果在病变部位。基于最近的发现,即通过病毒转染过表达关键转录因子诱导功能性神经元的快速和有效产生,以及能够介导干细胞和祖细胞中有效转基因表达的可生物降解的纳米颗粒转染方法,我们计划检验阶段特异性转录因子神经生成素2(Ngn 2)的瞬时表达是否与细胞增殖有关的假设。和少突胶质细胞转录因子Olig 2将促进它们在体内分别向功能性神经元和少突胶质细胞分化。本研究的主要目的是:(1)建立一种高效的纳米颗粒转染hiPSC源性神经干细胞,并研究Ngn 2和Olig 2表达对神经元和少突胶质细胞分化的影响;(2)证明源自hiPSC的Ngn 2转染和Olig 2转染的hNSC在体内的定向分化,以及水凝胶递送在促进hNSC存活、分化、和转染细胞的成熟以及在大鼠TBI模型中增强组织再生。这项研究不仅将促进我们对转录因子激活在体内调节移植的hiPSC衍生的NSC的存活、分化和成熟的理解,而且还将为治疗广泛的创伤性损伤和神经退行性疾病的脑组织再生提供新的策略。这种新的纳米颗粒方法与具有确定组成的原位形成水凝胶一起对于临床转化是高度期望的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hai-Quan Mao其他文献
Hai-Quan Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hai-Quan Mao', 18)}}的其他基金
A nanofiber-hydrogel composite plug for perianal fistula repair
用于肛周瘘修复的纳米纤维-水凝胶复合塞
- 批准号:
10607324 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
Biomimetic Matrix for Ex Vivo and In Vivo Activation of T Cells
用于 T 细胞离体和体内激活的仿生基质
- 批准号:
10608176 - 财政年份:2020
- 资助金额:
$ 20.25万 - 项目类别:
Biomimetic Matrix for Ex Vivo and In Vivo Activation of T Cells
用于 T 细胞离体和体内激活的仿生基质
- 批准号:
10205064 - 财政年份:2020
- 资助金额:
$ 20.25万 - 项目类别:
Biomimetic Matrix for Ex Vivo and In Vivo Activation of T Cells
用于 T 细胞离体和体内激活的仿生基质
- 批准号:
10392463 - 财政年份:2020
- 资助金额:
$ 20.25万 - 项目类别:
Promote Organization and Integration of Regenerated Neurons from Transplanted Human Neural Stem Cells
促进移植的人类神经干细胞再生神经元的组织和整合
- 批准号:
9392271 - 财政年份:2017
- 资助金额:
$ 20.25万 - 项目类别:
Nanoparticle Delivery of DNA Vaccine Against Zika Virus
纳米颗粒递送抗寨卡病毒 DNA 疫苗
- 批准号:
9379639 - 财政年份:2017
- 资助金额:
$ 20.25万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Standard Grant
Restoring Brain Plasticity through Sleep
通过睡眠恢复大脑可塑性
- 批准号:
24K09679 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Discovery Early Career Researcher Award
How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
- 批准号:
DE240100614 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Discovery Early Career Researcher Award
Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
- 批准号:
498289 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Operating Grants
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Research Grant
Understanding the mechanisms underlying the detrimental effects of NAFLD on the brain
了解 NAFLD 对大脑产生有害影响的机制
- 批准号:
MR/X033287/1 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Fellowship
FastMap-IMPACT: Brain mechanisms of rapid language learning: an Investigation of Memory in Patients and Ageing with Consolidation Theory
FastMap-IMPACT:快速语言学习的大脑机制:用巩固理论研究患者记忆和衰老
- 批准号:
EP/Y016815/1 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 20.25万 - 项目类别:
Research Grant














{{item.name}}会员




