Development and Dissemination of Robust Brain MRI Measurement Tools
强大的脑 MRI 测量工具的开发和传播
基本信息
- 批准号:8530230
- 负责人:
- 金额:$ 46.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-17 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAtlasesBiological MarkersBrainBrain DiseasesClassificationClinicalClinical ResearchCollaborationsComplexComputer softwareDataDementiaDevelopmentDiagnosisDiseaseDocumentationEarly DiagnosisEngineeringFunctional Magnetic Resonance ImagingGoalsImageImage AnalysisIndividualInterventionJointsLabelLeadMachine LearningMagnetic Resonance ImagingManualsMeasurementMeasuresMedical ImagingMethodsModelingMonitorMultimodal ImagingNerve DegenerationOutcomePatientsPatternPerformancePhasePositron-Emission TomographyResearchSamplingSchizophreniaSimulateSliceSource CodeStagingStructureTestingTimeTrainingTreesUpdateWorkabstractingbaseclinical applicationcognitive functiondisease diagnosisflexibilityimage registrationimage visualizationinformation classificationmild cognitive impairmentnervous system disorderneuroimagingneurological pathologyneuropsychiatrynovelopen sourceprogramsresearch studysoftware developmentspatiotemporalsymposiumtool
项目摘要
DESCRIPTION (provided by applicant): Development and Dissemination of Robust Brain MRI Measurement Tools Abstract: Summary. Neuroimaging provides a safe, non-invasive measurement of the whole brain, and has enabled large clinical and research studies for brain development, aging, and disorders. However, many disorders, i.e., major neurodegenerative and neuropsychiatric disorders, cause complex spatiotemporal patterns of brain alteration, which are often difficult to identify visually and compare over time. To address this critical issu, in the renewal phase of this project, we will continue to work with GE Research to develop and disseminate a software package for brain measurement, comparison, and diagnosis. The new tools include 1) a novel tree-based registration and multi-atlases-based segmentation method for precise measurement of brain alteration patterns, and 2) novel pattern classification and regression methods for early detection and longitudinal monitoring of brain disorders. Aims. Currently, most existing atlas-based labeling methods simply warp each atlas independently to the individual brain for multi-atlases-based structural labeling. This could lead to 1) inaccurate labeling due to possible large registration error when the atlases are very different from the target individual brain, and 2) inconsistent labeling of the same brain structure across different individuals due to independent labeling of each individual brain. The first goal of this project is
hence to develop a novel tree-based registration and multi-atlases -based segmentation method for simultaneous registration and joint labeling of all individual brains by concurrent consideration of all atlases. With measurements of brain structures and their alteration patterns, univariate analysis methods are often used to understand how the disease affects brain structure and function at a group level. Although this can lead to better understanding of neurological pathology of brain disorders, more sophisticated image analysis methods are urgently needed for quantitative assessment and early diagnosis of brain abnormality at an individual level. Thus, the second goal of this project is to develop various novel machine learning methods for early diagnosis of brain disorders and better quantification of brain abnormality at an individual level. Specifically, we will take Alzheimer's disease (AD), which is the most common form of dementia, as an example for demonstrating the performance of our proposed methods in early diagnosis of AD, as well as in prediction of long-term outcomes of individuals with mild cognitive impairment (MCI). The last goal of this project is to build, for ou developed methods, the respective software modules for the 3D Slicer (a free open-source software package with a flexible modular platform for medical image analysis and visualization, http://www.slicer.org/), to promote the potential clinical applications by using tools in 3D Slicer
for preprocessing of patient data and our tools for diagnosis. Again, this software development work will be performed in collaboration with our current collaborator, GE Research, which is a part of the engineering core of the National Alliance for Medical Image Computing (NA-MIC) that is focused on developing 3D Slicer. Both source code and pre-compiled programs will be made freely available. Applications. These methods can find their applications in diverse fields, i.e., quantifying brain abnormality of neurological diseases (i.e., AD and schizophrenia), measuring effects of different pharmacological interventions on the brain, and finding associations between structural and cognitive function variables.
描述(由申请人提供):强大的脑MRI测量工具的开发和传播摘要:摘要。神经影像学提供了一种安全的、非侵入性的全脑测量方法,并使大脑发育、衰老和疾病的大型临床和研究成为可能。然而,许多疾病,即,严重的神经退行性和神经精神疾病引起复杂的大脑改变的时空模式,其通常难以视觉识别和随时间比较。为了解决这一关键问题,在该项目的更新阶段,我们将继续与GE Research合作,开发和推广用于大脑测量、比较和诊断的软件包。这些新工具包括:1)一种新的基于树的配准和基于多图谱的分割方法,用于精确测量大脑改变模式; 2)新的模式分类和回归方法,用于大脑疾病的早期检测和纵向监测。目标。目前,大多数现有的基于图谱的标记方法简单地将每个图谱独立地弯曲到个体大脑,用于基于多图谱的结构标记。这可能导致:1)当图谱与目标个体大脑非常不同时,由于可能的大配准误差而导致标记不准确,以及2)由于每个个体大脑的独立标记而导致不同个体之间的相同大脑结构的标记不一致。这个项目的第一个目标是
因此,开发了一种新的基于树的配准和基于多图谱的分割方法,用于通过同时考虑所有图谱来同时配准和联合标记所有个体大脑。通过测量大脑结构及其改变模式,单变量分析方法通常用于了解疾病如何在组水平上影响大脑结构和功能。虽然这可以导致更好地了解脑疾病的神经病理学,更复杂的图像分析方法,迫切需要定量评估和早期诊断的大脑异常在个人水平。因此,该项目的第二个目标是开发各种新的机器学习方法,用于大脑疾病的早期诊断和更好地量化个体水平的大脑异常。具体来说,我们将以阿尔茨海默病(AD),这是最常见的痴呆症形式,作为一个例子,证明我们提出的方法在早期诊断AD的性能,以及在预测轻度认知障碍(MCI)的个人的长期结果。本项目的最后一个目标是,针对所开发的方法,为3D Slicer(一个免费的开源软件包,具有用于医学图像分析和可视化的灵活模块化平台,http://www.slicer.org/)构建相应的软件模块,以通过使用3D Slicer中的工具来促进潜在的临床应用
用于预处理患者数据和我们的诊断工具。同样,这项软件开发工作将与我们目前的合作伙伴GE Research合作进行,GE Research是国家医学图像计算联盟(NA-MIC)工程核心的一部分,专注于开发3D切片机。源代码和预编译程序都将免费提供。应用.这些方法可以在不同的领域中找到它们的应用,即,量化神经系统疾病的大脑异常(即,AD和精神分裂症),测量不同药物干预对大脑的影响,并发现结构和认知功能变量之间的关联。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dinggang Shen其他文献
Dinggang Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dinggang Shen', 18)}}的其他基金
Automatic Pelvic Organ Delineation in Prostate Cancer Treatment
前列腺癌治疗中的自动盆腔器官描绘
- 批准号:
9186673 - 财政年份:2016
- 资助金额:
$ 46.88万 - 项目类别:
Infant Brain Measurement and Super-Resolution Atlas Construction
婴儿大脑测量和超分辨率图谱构建
- 批准号:
8725738 - 财政年份:2013
- 资助金额:
$ 46.88万 - 项目类别:
Infant Brain Measurement and Super-Resolution Atlas Construction
婴儿大脑测量和超分辨率图谱构建
- 批准号:
8583365 - 财政年份:2013
- 资助金额:
$ 46.88万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8688869 - 财政年份:2012
- 资助金额:
$ 46.88万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis
通过多模态神经图像分析量化大脑异常
- 批准号:
8964568 - 财政年份:2012
- 资助金额:
$ 46.88万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8373964 - 财政年份:2012
- 资助金额:
$ 46.88万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis,
通过多模态神经图像分析量化大脑异常,
- 批准号:
8518211 - 财政年份:2012
- 资助金额:
$ 46.88万 - 项目类别:
Quantifying Brain Abnormality by Multimodality Neuroimage Analysis
通过多模态神经图像分析量化大脑异常
- 批准号:
9246415 - 财政年份:2012
- 资助金额:
$ 46.88万 - 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
- 批准号:
7780861 - 财政年份:2011
- 资助金额:
$ 46.88万 - 项目类别:
Fast, Robust Analysis of Large Population Data
对大量人口数据进行快速、稳健的分析
- 批准号:
8725660 - 财政年份:2011
- 资助金额:
$ 46.88万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 46.88万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 46.88万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 46.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 46.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 46.88万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 46.88万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 46.88万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 46.88万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 46.88万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 46.88万 - 项目类别: