Development of novel detection and prediction algorithms for Microcystis blooms
开发微囊藻水华的新型检测和预测算法
基本信息
- 批准号:8705519
- 负责人:
- 金额:$ 5.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-24 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgal BloomsAlgorithmsAnimalsCoupledCyanobacteriumDataData CollectionData SetDatabasesDetectionDevelopmentDisease OutbreaksEcologyEconomicsEventEvolutionFresh WaterFutureGoalsGreat Lakes RegionHealthHealth SciencesHot SpotHumanImageryIn SituLeadLifeMapsMeasurementMeasuresMethodsMetricMicrocystisModelingMonitorMultivariate AnalysisNutrientOpticsOrganismPhytoplanktonPoliciesProbabilityPropertyPublic HealthResearchResearch PersonnelRiskSeasonsShippingShipsSpatial DistributionStreamSurfaceSystemTechnologyTimeToxinWaterWater SupplyWorkbasecostdrinking waterenvironmental health economicsexperiencefallsharmful algal bloomshealth economicsimprovedindexinginnovationinstrumentationnovelprogramspublic health relevanceremote sensingskillstooltoxic bloomwater quality
项目摘要
DESCRIPTION (provided by applicant)
There are two main objectives to the proposed research: 1) to develop a new quantitative detection algorithm for Harmful Algal Blooms (HABs) in the Great Lakes based on remote sensing imagery by refining and augmenting currently qualitative algorithms; and 2) to develop an ecological niche model to predict the onset of HABs in the Great Lakes with inputs from remotely-sensed data products and state-of-the-art in-situ environmental measurements.
Cyanobacteria-dominated HABs currently pose a serious health and economic risk to inhabitants and users of the Great Lakes, often producing toxins in sufficient quantity to cause severe health problems to humans and animals. The investigators' proposed research will benefit the human health and livelihood by providing tools to better manage the human health risks associated with HABs in the future based on a better understanding of the underlying ecology of HABs and improved synoptic detection methods. One component of the investigators' research will consist of implementing a monitoring program consisting of autonomous measurements - combined with ship measurements - of environmental parameters in western Lake Erie and Saginaw Bay critical to HAB initiation and promotion. These measurements will be used in the development of new satellite products that can provide synoptic observation of environmental signatures of these toxic algal blooms. The investigators will combine these new satellite products with other synoptic satellite environmental products and available in-situ environmental measurements to construct an historical data set that characterizes HAB events in the context of associated environmental conditions that cultivate the blooms. This data set will guide the development of an innovative ecological niche model based on multivariate analysis that will predict the spatial and temporal distribution of imminent HAB events from real-time environmental inputs.
The investigators' team consists of seasoned oceanographers with many years of experience in instrumentation, bio-optics, remote sensing, phytoplankton and HAB ecology, and algorithm development, bringing a complimentary and comprehensive set of expertise to the problem of HAB detection and prediction. Their ultimate aim is to develop a critical set of tools for effectively managing human health risks associated with cyanobacteria blooms in water bodies around the globe.
描述(由申请人提供)
本研究的主要目标有两个:1)通过对现有定性算法的改进和扩充,提出一种新的基于遥感图像的五大湖赤潮定量检测算法;以及2)开发一个生态小生境模型,利用遥感数据产品和最新技术的投入,预测五大湖中有害生物的发生。现场环境测量。
目前,以蓝细菌为主的有害藻华对五大湖的居民和使用者构成了严重的健康和经济风险,往往产生的毒素足以对人类和动物造成严重的健康问题。 研究人员提出的研究将通过提供工具来更好地管理未来与赤潮相关的人类健康风险,从而有利于人类健康和生计,这是基于对赤潮潜在生态的更好理解和改进的天气检测方法。调查人员研究的一个组成部分将包括实施一个监测方案,该方案包括对伊利湖西部和萨吉诺湾的环境参数进行自主测量----结合船舶测量----这对赤潮的启动和推广至关重要。这些测量结果将用于开发新的卫星产品,以便对这些有毒藻华的环境特征进行天气观测。 研究人员将把这些新的卫星产品与其他天气卫星环境产品和现有的现场环境测量相结合,以构建一个历史数据集,在培养水华的相关环境条件的背景下描述HAB事件的特征。该数据集将指导基于多变量分析的创新生态位模型的开发,该模型将根据实时环境输入预测即将发生的赤潮事件的空间和时间分布。
调查小组由经验丰富的海洋学家组成,他们在仪器、生物光学、遥感、浮游植物和赤潮生态学以及算法开发方面拥有多年经验,为赤潮检测和预测问题带来了一套全面的专业知识。他们的最终目标是开发一套关键的工具,用于有效管理与地球仪水体中蓝藻水华相关的人类健康风险。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical backscattering and linear polarization properties of the colony forming cyanobacterium Microcystis.
形成蓝藻微囊藻菌落的光学反向散射和线性偏振特性。
- DOI:10.1364/oe.405871
- 发表时间:2020
- 期刊:
- 影响因子:3.8
- 作者:Zhai,Siyao;Twardowski,Michael;Hedley,JohnD;McFarland,Malcolm;Nayak,AdityaR;Moore,Timothy
- 通讯作者:Moore,Timothy
An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters.
- DOI:10.1016/j.rse.2013.11.021
- 发表时间:2014-03-05
- 期刊:
- 影响因子:13.5
- 作者:Moore, Timothy S.;Dowell, Mark D.;Bradt, Shane;Ruiz Verdu, Antonio
- 通讯作者:Ruiz Verdu, Antonio
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Moore其他文献
Timothy Moore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Moore', 18)}}的其他基金
Development of novel detection and prediction algorithms for Microcystis blooms
开发微囊藻水华的新型检测和预测算法
- 批准号:
8387923 - 财政年份:2012
- 资助金额:
$ 5.61万 - 项目类别:
Development of novel detection and prediction algorithms for Microcystis blooms
开发微囊藻水华的新型检测和预测算法
- 批准号:
8554363 - 财政年份:2012
- 资助金额:
$ 5.61万 - 项目类别:
相似海外基金
RII Track-4: @NASA: Next Generation Hyperspectral Approaches to Detect Harmful Algal Blooms
RII Track-4:@NASA:检测有害藻华的下一代高光谱方法
- 批准号:
2327287 - 财政年份:2024
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
STTR Phase I: Electrochemical Water Treatment Devices to Combat Harmful Algal Blooms
STTR 第一阶段:对抗有害藻华的电化学水处理装置
- 批准号:
2321315 - 财政年份:2023
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
ERI: Quantifying Inositol Phosphate Dephosphorylation to Understand the Role of Recalcitrant Organic Phosphorus Forms on Harmful Algal Blooms in Freshwater Systems
ERI:量化肌醇磷酸盐去磷酸化,以了解顽固有机磷形式对淡水系统中有害藻类繁殖的作用
- 批准号:
2138520 - 财政年份:2022
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
Combining experiments, genomic tools, and an eco-evolutionary framework to understand the biotic basis of harmful algal blooms
结合实验、基因组工具和生态进化框架来了解有害藻华的生物基础
- 批准号:
568042-2022 - 财政年份:2022
- 资助金额:
$ 5.61万 - 项目类别:
Postdoctoral Fellowships
An action plan of Monitoring, Investigation and Management for Harmful Algal Blooms in the Tam Giang Lagoon (Vietnam) under the climate change and global warming effects
气候变化和全球变暖影响下越南三江泻湖有害藻华监测、调查和管理行动计划
- 批准号:
577052-2022 - 财政年份:2022
- 资助金额:
$ 5.61万 - 项目类别:
Alliance Grants
DISES: RUI: Emplacing Algal Blooms to Advance Sustainability Theory and Praxis (EMBAST)
DISES:RUI:利用藻华来推进可持续发展理论和实践 (EMBAST)
- 批准号:
2206519 - 财政年份:2022
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
Advancing the predictive modelling framework to improving understanding of the Cyanobacterial Harmful Algal Blooms (CHAB) in the future context of global warming and climate change
推进预测模型框架,以提高对未来全球变暖和气候变化背景下蓝藻有害藻华(CHAB)的了解
- 批准号:
RGPIN-2022-03906 - 财政年份:2022
- 资助金额:
$ 5.61万 - 项目类别:
Discovery Grants Program - Individual
DISES: Coproducing Actionable Science to Understand, Mitigate, and Adapt to Cyanobacterial Harmful Algal Blooms (CHABS)
DISES:共同开展可操作的科学来理解、减轻和适应蓝藻有害藻华 (CHABS)
- 批准号:
2108917 - 财政年份:2022
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
Excellence in Research: Understanding the interactions of terrestrial and freshwater systems for developing a data-driven decision-making framework to manage Algal Blooms
卓越研究:了解陆地和淡水系统的相互作用,以开发数据驱动的决策框架来管理藻华
- 批准号:
2200384 - 财政年份:2022
- 资助金额:
$ 5.61万 - 项目类别:
Standard Grant
BloomSafe: Developing a cost-effective, rapid and portable diagnostic tool for the detection of toxins resulting from algal blooms
BloomSafe:开发一种经济高效、快速且便携式的诊断工具,用于检测藻华产生的毒素
- 批准号:
NE/X011607/1 - 财政年份:2022
- 资助金额:
$ 5.61万 - 项目类别:
Research Grant














{{item.name}}会员




