Asymmetric Catalysis in Main Group Chemistry
主族化学中的不对称催化
基本信息
- 批准号:8635171
- 负责人:
- 金额:$ 28.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-22 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsAlkenesAttentionBromineCarbonCatalysisChargeChemicalsChemistryChlorineComplexDevelopmentDissociationElementsFaceFoundationsFrequenciesGoalsIndiumInvestigationIodineIonsKineticsLaboratoriesLearningMethodsNitrogenOrganic ChemistryOrganic SynthesisOxygenPositioning AttributeProcessReactionReportingResearch ProposalsSchemeSolutionsStructureSulfurbasecatalystchemical reactiondesignfunctional groupnovelpi bondprogramspublic health relevanceracemization
项目摘要
PROJECT SUMMARY/ABSTRACT
The carbon-carbon double bond is arguably the most important functional group in all of organic chemistry.
Aside from its central position in defining structure, the ability to create two vicinal stereogenic carbon atoms by
the introduction of two new bonds at the termini of a double bond has elevated it to this rarefied status. Count-
less reactions have been introduced to effect regio, diastereo and enantioselective functionalization of double
bonds with good generality. However, only recently have organic chemists turned their attention to the enantio-
controlled introduction of elements in the main group such as sulfur, chlorine, bromine and iodine, in combina-
tion with the much more common elements carbon, nitrogen and oxygen. Although intriguing, these recent
reports constitute an ad hoc application of known catalysts and concepts to the solution of creating new, cata-
lytic enantioselective transformations. Our long-term goal is to construct the mechanistic/physical organic
foundation for the development of generally applicable and highly selective alkene functionalization reactions.
The primary objectives of this proposal are to: (1) apply the concept of Lewis base activation of Lewis acids
developed in these laboratories, activate electrophilic species in Groups 16 and 17 in the Main Group, (2) learn
the structure/reactivity correlations and the rules for achieving high catalytic activity (turnover frequencies and
turnover numbers) for the target reactions, (3) design chiral Lewis bases that will impart high stereoselectivity
and high chemical conversion for the introduction of new carbon and heteroatom substituted stereocenters,
and (4) carry out detailed mechanistic (kinetic, spectroscopic, crystallographic, computational) investigations of
the newly invented catalytic reactions described below.
The first major effort will be the expansion of catalytic, enantioselective sulfenofunctionalization reactions to
many substrate classes. Direct functionalization and cyclofunctionalization of alkenes bearing a tethered nu-
cleophile (oxygen, nitrogen, carbon) is a powerful method for creating stereodefined chains, heterocycles, and
carbocycles. Lewis basic catalysts of novel topology that can effect the stereoselective sulfenofunctionalization
of E- and Z-alkenes will be designed and evaluated in many of these transformations.
The second major effort, divided into two sub goals, is the development of catalytic, enantioselective halo-
functionalization reactions. The development of catalysts for these extremely important transformations is
guided by our demonstration that chloriranium ions are configurationally stable whereas bromiranium and
iodiranium ions are not. Thus, the design criteria for these transformations diverge into two sub goals: (1) the
design of catalysts that provide enantiotopic face differentiation for the delivery of a chlorenium ion, and (2) the
design of catalysts that provide enantiotopic face differentiation for the delivery of a bromenium (iodenium) ion
AND stabilize the intermediate against racemization prior to capture.
项目概要/摘要
碳-碳双键可以说是所有有机化学中最重要的官能团。
除了其在定义结构中的中心位置之外,还能够通过以下方式创建两个邻位立体碳原子:
在双键末端引入两个新键使其达到了这种稀有的状态。数数-
引入较少的反应来影响双分子的区域、非对映和对映选择性官能化
具有良好通用性的债券。然而,直到最近,有机化学家才将注意力转向对映体
控制引入主族元素,如硫、氯、溴和碘,结合
与更常见的元素碳、氮和氧的化合。虽然很有趣,但最近的这些
报告构成了已知催化剂和概念的临时应用,以解决创造新的催化剂的问题。
裂解性对映选择性转化。我们的长远目标是构建机械/物理有机
为开发普遍适用和高选择性的烯烃官能化反应奠定了基础。
该提案的主要目标是:(1)应用路易斯酸的路易斯碱活化概念
在这些实验室开发的,激活主组中第 16 组和第 17 组的亲电物种,(2) 学习
结构/反应性相关性以及实现高催化活性的规则(周转频率和
转换数)的目标反应,(3)设计手性路易斯碱,以赋予高立体选择性
和高化学转化率以引入新的碳和杂原子取代的立体中心,
(4) 进行详细的机理(动力学、光谱、晶体学、计算)研究
新发明的催化反应如下所述。
第一个主要努力是将催化、对映选择性磺基官能化反应扩展到
许多基材类别。带有束缚核的烯烃的直接官能化和环官能化
亲电体(氧、氮、碳)是创建立体链、杂环和
碳环。新型拓扑路易斯碱性催化剂可实现立体选择性磺基官能化
E-和Z-烯烃的设计和评估将在许多此类转化中进行。
第二个主要努力分为两个子目标,是开发催化的、对映选择性的卤代化合物。
功能化反应。这些极其重要的转变的催化剂的开发是
以我们的证明为指导,氯离子是构型稳定的,而溴和
碘离子则不然。因此,这些转换的设计标准分为两个子目标:(1)
设计为传递氯离子提供对映体面差异的催化剂,以及(2)
设计提供对映体面差异以传递溴(碘)离子的催化剂
并在捕获前稳定中间体以防止外消旋化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Eric Denmark其他文献
Scott Eric Denmark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Eric Denmark', 18)}}的其他基金
Synthetic and Mechanistic Studies on Preparatively Significant Reactions
预备性显着反应的合成与机理研究
- 批准号:
9895811 - 财政年份:2018
- 资助金额:
$ 28.89万 - 项目类别:
Synthetic and Mechanistic Studies on Preparatively Significant Reactions
预备性显着反应的合成与机理研究
- 批准号:
10387451 - 财政年份:2018
- 资助金额:
$ 28.89万 - 项目类别:
Synthetic and Mechanistic Studies on Preparatively Significant Reactions
预备性显着反应的合成与机理研究
- 批准号:
10398806 - 财政年份:2018
- 资助金额:
$ 28.89万 - 项目类别:
Asymmetric Lewis Base Catalysis in Main Group Chemistry
主族化学中的不对称路易斯碱催化
- 批准号:
8213452 - 财政年份:2010
- 资助金额:
$ 28.89万 - 项目类别:
Asymmetric Lewis Base Catalysis in Main Group Chemistry
主族化学中的不对称路易斯碱催化
- 批准号:
8050550 - 财政年份:2010
- 资助金额:
$ 28.89万 - 项目类别:
Asymmetric Lewis Base Catalysis in Main Group Chemistry
主族化学中的不对称路易斯碱催化
- 批准号:
8414158 - 财政年份:2010
- 资助金额:
$ 28.89万 - 项目类别:
Asymmetric Lewis Base Catalysis in Main Group Chemistry
主族化学中的不对称路易斯碱催化
- 批准号:
7887971 - 财政年份:2010
- 资助金额:
$ 28.89万 - 项目类别:
相似海外基金
Bifunctional Catalysts for MHAT Hydrofunctionalization of Alkenes
用于烯烃 MHAT 加氢官能化的双功能催化剂
- 批准号:
2400341 - 财政年份:2024
- 资助金额:
$ 28.89万 - 项目类别:
Continuing Grant
Environmentally Benign Precise Transformations of Alkenes by Chiral Chalcogenide Catalysts
手性硫属化物催化剂对环境无害的烯烃精确转化
- 批准号:
22KJ2498 - 财政年份:2023
- 资助金额:
$ 28.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
electrochemical dication pool: a new strategy to couple alkenes and abundant nucleophiles
电化学双阳离子池:偶联烯烃和丰富亲核试剂的新策略
- 批准号:
10635132 - 财政年份:2023
- 资助金额:
$ 28.89万 - 项目类别:
Development of Remote Bismetalation Reaction of Alkenes via Chain Walking
链式行走烯烃远程双金属化反应的进展
- 批准号:
22KJ2699 - 财政年份:2023
- 资助金额:
$ 28.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Connective Stereospecific Generation of Alkenes Continued
烯烃的连接立体定向生成(续)
- 批准号:
2247031 - 财政年份:2023
- 资助金额:
$ 28.89万 - 项目类别:
Standard Grant
Expanding the small molecule toolbox through novel applications of fluorinated alkenes
通过氟化烯烃的新颖应用扩展小分子工具箱
- 批准号:
10714822 - 财政年份:2023
- 资助金额:
$ 28.89万 - 项目类别:
Methods for Enantioselective Spirocycle Synthesis and Radical Hydroamination of Trisubstituted Alkenes
三取代烯烃的对映选择性螺环合成和自由基氢胺化方法
- 批准号:
10785901 - 财政年份:2023
- 资助金额:
$ 28.89万 - 项目类别:
Ruthenium-catalyzed hydrophosphination of alkenes
钌催化的烯烃氢膦酸化
- 批准号:
575021-2022 - 财政年份:2022
- 资助金额:
$ 28.89万 - 项目类别:
University Undergraduate Student Research Awards
New Catalytic Transformations for the Synthesis of Alkenes and Organoboron Compounds
烯烃和有机硼化合物合成的新催化转化
- 批准号:
2102231 - 财政年份:2021
- 资助金额:
$ 28.89万 - 项目类别:
Continuing Grant
Development of Enantioselective Carboalumination of Alkenes and Alkynes Catalyzed by Rare-Erath Metal Catalysts
稀土金属催化剂催化烯烃和炔烃对映选择性碳铝化反应的研究进展
- 批准号:
21F21334 - 财政年份:2021
- 资助金额:
$ 28.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




