Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
基本信息
- 批准号:8776659
- 负责人:
- 金额:$ 38.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAnimalsBiomechanicsBladderBrainBrain ConcussionCardiac MyocytesCell Culture TechniquesCellsCuesDepositionDevelopmentDevicesDrug EvaluationElectroplatingEnvironmentEvaluationFilmFunding MechanismsGoalsGoldHeartIn VitroInjuryLaboratory ResearchLocationManualsMasksMeasurementMechanicsMembraneMethodsMicroelectrodesNational Institute of Neurological Disorders and StrokeNerveNervous system structureNeuronsOrganOwnershipPatternPeripheral NervesPharmaceutical PreparationsPharmacologic SubstancePhasePlant RootsPlayProcessProductionPublishingRegenerative MedicineReproducibility of ResultsResearchResolutionRoleRunningSamplingShadowing (Histology)SiliconesSmall Business Innovation Research GrantSmooth MuscleSpinal CordSpinal cord injuryStem cellsStretchingSystemTechnologyTimeTissue EngineeringTissuesTraumatic Brain InjuryUnited States National Institutes of HealthWorkbasebiomaterial compatibilitycommercializationcostcost effectivecost effectivenessdata acquisitionelastomericevaporationflexibilityimprovedin vitro Modelin vivoin vivo Modelnerve injuryoperationparallel processingprototypepublic health relevancereconstructionrelating to nervous systemresearch and developmentresponsescale upscreeningspinal cord and brain injurystem cell differentiationtissue/cell culturetooltreatment strategy
项目摘要
DESCRIPTION (provided by applicant): The proposed work is directed at the commercialization of a stretchable microelectrode array (BMSEED's sMEA), a new tool that provides enhanced capabilities to simultaneously interface mechanically and electrically with cell cultures in vitro. The mechanical stretching of neurons in the brain or spinal cord is often te root cause of traumatic brain injury (TBI) and spinal cord injury (SCI). Mechanical strain is also an important cue for the differentiation of stem cells. It is currently not possible for in vitro models of TBI, SCI, or tissue engineering to carry out electrophysiological measurements while stretching the cells. BMSEED's sMEAs will enable this capability by having microelectrodes that stretch and relax elastically with the cells, allowing to (a) record and stimulate electrophysiological activity from the same location before, during, and after stretching the cells (b) investigate the cumulative effects of repeated, sub-threshold injuries over time (e.g., repetitive concussions), and (c) normalize post-injury neural activity to pre-injury levels. These capabilities will greatly improve research on the evaluation of drugs and other treatment strategies to minimize the damage to the nervous system after an injury, saving time, money and lives of animals. BMSEED's sMEA could also be an effective tool for controlling the mechanically-induced differentiation of stem cells into electrophysiologically active cells, such a neurons or cardiomyocytes, which is a major goal of regenerative medicine. BMSEED's sMEA consists of an elastomeric substrate with embedded microelectrodes, and an interface to the data acquisition system. Our previous research has demonstrated the capabilities of sMEA prototypes in traumatic brain injury research. Therefore, this proposed work aims to develop this sMEA into a commercial product by improving the current fabrication process. The first specific aim of this proposal is therefore to reduce the cost to produce sMEA through process simplification and parallel processing. We will (a) evaluate three methods to deposit the gold film
with respect to their cost-effectiveness and reliability, (b) replace the current lithographic methd to produce the microelectrode pattern with shadow mask patterning, and (c) replace the manual process to electroplate the microelectrodes with an automated one. The second specific aim is to characterize these low- cost sMEAs for traumatic brain injury research. We will first compare sMEAs produced with the three gold deposition methods for (i) their biocompatibility, (ii) their functionality, (iii) the maximum strain at which they remain functional, and (iv) how many times they can be re-used. We will then fabricate 70 sMEAs with the process that produces the highest quality sMEAs, and assess their repeatability using the same criteria. The results of this aim will also apply to other applications such as spinal cord injury and tissue engineering. The successful completion of this project will provide a cost-effective method to produce sMEAs. The long- term goal of BMSEED is to extend the application of the sMEAs' soft and compliant microelectrodes to in vivo neural interfaces in mechanically active (e.g., near the heart) and very
soft (e.g., the brain) environment.
描述(由申请人提供):建议的工作是针对可伸缩微电极阵列(BMSEED的sMEA)的商业化,这是一种新工具,提供了同时与体外细胞培养机械和电子接口的增强能力。脑或脊髓中神经元的机械拉伸通常是创伤性脑损伤(TBI)和脊髓损伤(SCI)的根源。机械应变也是干细胞分化的重要线索。目前,TBI、SCI或组织工程学的体外模型不可能在拉伸细胞的同时进行电生理测量。BMSEED的sMEA将通过具有与细胞一起弹性拉伸和放松的微电极来实现这一能力,从而允许(A)在拉伸细胞之前、期间和之后从相同位置记录和刺激电生理活动,(B)研究反复阈值以下损伤(例如,反复脑震荡)随时间的累积影响,以及(C)将损伤后的神经活动正常化到损伤前的水平。这些能力将极大地提高对药物评估和其他治疗策略的研究,将受伤后对神经系统的损害降至最低,从而节省动物的时间、金钱和生命。BMSEED的sMEA也可能成为控制机械诱导干细胞分化为电生理活性细胞(如神经元或心肌细胞)的有效工具,这是再生医学的主要目标。BMSEED的sMEA由嵌入微电极的弹性基板和与数据采集系统的接口组成。我们之前的研究已经证明了sMEA原型在创伤性脑损伤研究中的能力。因此,这项拟议的工作旨在通过改进现有的制造工艺将这种sMEA发展成商业产品。因此,这项提议的第一个具体目标是通过简化工艺和并行处理来降低生产sMEA的成本。我们将(A)评估三种沉积金膜的方法
就成本效益和可靠性而言,(B)用荫罩图案化取代目前的光刻方法来生产微电极图案,以及(C)用自动化工艺来取代手工电镀微电极的工艺。第二个具体目标是描述这些用于创伤性脑损伤研究的低成本sMEA。我们将首先从(I)其生物兼容性、(Ii)其功能性、(Iii)它们保持功能的最大应变以及(Iv)它们可重复使用的次数来比较所生产的sMEA与三种黄金沉积方法。然后,我们将用产生最高质量的sMEA的工艺制造70个sMEA,并使用相同的标准评估它们的重复性。这一目标的结果也将适用于其他应用,如脊髓损伤和组织工程。该项目的成功完成将为生产中小型企业提供一种具有成本效益的方法。BMSEED的长期目标是将SMEA柔软和顺应性微电极的应用扩展到机械活动(例如,心脏附近)和非常活跃的体内神经接口
软(例如,大脑)环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Graudejus其他文献
Oliver Graudejus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Graudejus', 18)}}的其他基金
A physiologically relevant pre-clinical drug screening platform for Alzheimer's Disease and Traumatic Brain Injury with integrated stretchable microelectrodes
具有集成可拉伸微电极的针对阿尔茨海默病和创伤性脑损伤的生理相关临床前药物筛选平台
- 批准号:
10482284 - 财政年份:2022
- 资助金额:
$ 38.86万 - 项目类别:
The first adaptable, 3D-formfitting microelectrode array for organoid-based models of neurological and neurodegenerative diseases
第一个适应性强的 3D 贴合微电极阵列,用于基于类器官的神经系统和神经退行性疾病模型
- 批准号:
10324053 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别:
The first adaptable, 3D-formfitting microelectrode array for organoid-based models of neurological and neurodegenerative diseases
第一个适应性强的 3D 贴合微电极阵列,用于基于类器官的神经系统和神经退行性疾病模型
- 批准号:
10584822 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别:
Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
- 批准号:
10192345 - 财政年份:2020
- 资助金额:
$ 38.86万 - 项目类别:
Development of a large area high resolution micro ECoG electrode array
大面积高分辨率微ECoG电极阵列的开发
- 批准号:
9410465 - 财政年份:2016
- 资助金额:
$ 38.86万 - 项目类别:
Development of a large area high resolution micro ECoG electrode array
大面积高分辨率微ECoG电极阵列的开发
- 批准号:
9274056 - 财政年份:2016
- 资助金额:
$ 38.86万 - 项目类别:
Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
- 批准号:
9089705 - 财政年份:2014
- 资助金额:
$ 38.86万 - 项目类别:
Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
- 批准号:
8887394 - 财政年份:2014
- 资助金额:
$ 38.86万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 38.86万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 38.86万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 38.86万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 38.86万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)