The first adaptable, 3D-formfitting microelectrode array for organoid-based models of neurological and neurodegenerative diseases
第一个适应性强的 3D 贴合微电极阵列,用于基于类器官的神经系统和神经退行性疾病模型
基本信息
- 批准号:10584822
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAlzheimer&aposs DiseaseAnimal ModelAnimalsAreaBiological MarkersBrainBrain DiseasesCardiacCardiovascular DiseasesCell Culture TechniquesCell physiologyCharacteristicsComplexDevelopmentDimensionsDiseaseDisease modelDrug ScreeningElectrodesElectrophysiology (science)EquipmentEvaluationHealth Care CostsHumanImageIn VitroMeasuresMechanicsMembraneMicroelectrodesModelingMonitorMorphologic artifactsNamesNerve DegenerationNeurodegenerative DisordersNeurologicNeurological ModelsNoiseOrganOrganoidsOutcomeParkinson DiseasePhasePhysiologicalPhysiologyPlant RootsPre-Clinical ModelPreclinical Drug DevelopmentProblem SolvingPropertyProtocols documentationReproducibilityResearchResolutionShapesSignal TransductionSiteSocietiesStretchingStructureSuctionSurfaceTechnologyThickTissuesTraumatic Brain InjuryVacuumValidationWorkautism spectrum disorderbasecell behaviorcellular imagingdrug candidatedrug developmentdrug efficacydrug testingelastomericelectric impedanceelectrical propertyfluorescence microscopehuman modelimprovedin vitro Modelin vivoinduced pluripotent stem cellinduced pluripotent stem cell technologyinnovationinstrumentationmechanical propertiesmodel developmentnervous system disorderneural networkneurotransmissionnovelpre-clinicalpre-clinical researchpressurerelating to nervous systemtherapy developmentthree-dimensional modelingvoltage
项目摘要
Abstract
The proposed work aims at the development of an enhanced organoid-based in vitro pre-clinical drug
screening platform for neurological and neurodegenerative brain diseases. 2D in vitro cell cultures and non-
human animals have been the mainstay of pre-clinical drug development and mechanistic studies for decades.
However, 2D cell cultures and animals do not accurately recapitulate the complexity and unique features of
human physiology, thus behave differently from their in vivo and human counterparts in many key
characteristics of cellular behavior, limiting our ability to accurately model brain diseases. Thanks to
advancements in human induced pluripotent stem cell (hiPSC) technology, complex structures resembling
developing organs, named organoids, have been generated for many types of organs, including brain
organoids. These human organoids replicate critical organ and tissue-specific features not observed in animal
models or 2D cell cultures, thus providing a unique opportunity to model human organ structure and function
under healthy and disease conditions. A major limitation for brain organoid research is the lack of adequate
instrumentation to monitor spatial and temporal organization of neural networks. Specifically, organoids are
spherical whereas commercial microelectrode arrays (MEAs) are flat, which reduces the accuracy to determine
neural network organization because the cellular surface area for recording neural signals is limited and
organoids remodel on flat surfaces. To enhance the value of brain organoids for preclinical research and
disease modeling, an MEA technology is needed that enables monitoring of neural signals across as much of
the surface of the physiologically intact organoid as possible. No such commercial platform currently exists.
This application aims to solve this problem by utilizing BMSEED’s stretchable microelectrodes to create
pockets of variable sizes to contain the organoid, retain its shape and physiological function, and envelope it
with microelectrodes for recording of neural activity across its surface. This novel 3D platform, the Organoid-
Based Stimulating und Recording Vacuum Equipment (OBSuRVE), integrates three modules that (i) create the
pockets in the adaptable contour for organoid research Multidimensional Electrode Array (conforMEA), (ii)
record neural signals, and (iii) image cells and cellular processes. Specifically, this proposal has three aims.
The first specific aim is focused on building the OBSuRVE platform, and to adapt the conforMEAs to meet the
need for organoids research. The second specific aim is the evaluation of the electrical and mechanical
properties of the platform. The third specific aim is the validation of the OBSuRVE platform for drug screening
and disease modeling using brain organoids. The focus of this proposal are human brain organoids because
neurological and neurodegenerative diseases, such as Autism, Alzheimer’s Disease, and Parkinson’s Disease,
are among the most prevalent and costly health problems facing our society. However, the results will be
applicable to other types of organoids, e.g., cardiac spheroids, for cardiovascular disease models as well.
摘要
拟议的工作旨在开发一种增强的基于类器官的体外临床前药物
神经系统和神经退行性脑部疾病的筛查平台。2D体外细胞培养和非
几十年来,人类动物一直是临床前药物开发和机理研究的支柱。
然而,2D细胞培养物和动物不能准确地概括细胞培养物的复杂性和独特特征。
因此,人类生理学在许多关键方面与它们在体内和人类对应物表现不同
细胞行为的特征,限制了我们准确模拟大脑疾病的能力。感谢
人类诱导多能干细胞(hiPSC)技术的进步,类似于
发育中的器官,称为类器官,已经产生了许多类型的器官,包括大脑
类器官这些人类类器官复制了动物中未观察到的关键器官和组织特异性特征
模型或2D细胞培养,从而提供了一个独特的机会,模拟人体器官的结构和功能
在健康和疾病的条件下。脑类器官研究的一个主要限制是缺乏足够的
监测神经网络的空间和时间组织的仪器。具体来说,类器官是
球形,而商业微电极阵列(MEA)是平坦的,这降低了确定的准确性
神经网络组织,因为用于记录神经信号的细胞表面积有限,
类器官在平面上重塑。为了提高脑类器官在临床前研究中的价值,
疾病建模,需要一种MEA技术,能够监测尽可能多的
尽可能地保护生理上完整的类器官表面。目前还没有这样的商业平台。
该应用旨在通过利用BMSEED的可拉伸微电极来解决这个问题,
不同大小的口袋,以容纳类器官,保持其形状和生理功能,并包裹它
用微电极记录其表面的神经活动。这个新的3D平台,器官-
基于刺激和记录真空设备(OBSuRVE),集成了三个模块,(i)创建
用于类器官研究的适应性轮廓中的口袋多维电极阵列(conforMEA),(ii)
记录神经信号,和(iii)对细胞和细胞过程成像。具体而言,这项建议有三个目标。
第一个具体目标是建立OBSuRVE平台,并调整一致性多边环境协定,以满足
需要进行类器官研究。第二个具体目标是评估电气和机械
平台的属性。第三个具体目标是验证OBSuRVE平台用于药物筛选
和疾病模型的研究。这项提案的重点是人脑类器官,
神经和神经变性疾病,如自闭症、阿尔茨海默病和帕金森病,
是我们社会面临的最普遍和代价最高的健康问题之一。然而,结果将是
适用于其它类型的类器官,例如,心脏球体,也用于心血管疾病模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Graudejus其他文献
Oliver Graudejus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Graudejus', 18)}}的其他基金
A physiologically relevant pre-clinical drug screening platform for Alzheimer's Disease and Traumatic Brain Injury with integrated stretchable microelectrodes
具有集成可拉伸微电极的针对阿尔茨海默病和创伤性脑损伤的生理相关临床前药物筛选平台
- 批准号:
10482284 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
The first adaptable, 3D-formfitting microelectrode array for organoid-based models of neurological and neurodegenerative diseases
第一个适应性强的 3D 贴合微电极阵列,用于基于类器官的神经系统和神经退行性疾病模型
- 批准号:
10324053 - 财政年份:2021
- 资助金额:
$ 5.5万 - 项目类别:
Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
- 批准号:
10192345 - 财政年份:2020
- 资助金额:
$ 5.5万 - 项目类别:
Development of a large area high resolution micro ECoG electrode array
大面积高分辨率微ECoG电极阵列的开发
- 批准号:
9410465 - 财政年份:2016
- 资助金额:
$ 5.5万 - 项目类别:
Development of a large area high resolution micro ECoG electrode array
大面积高分辨率微ECoG电极阵列的开发
- 批准号:
9274056 - 财政年份:2016
- 资助金额:
$ 5.5万 - 项目类别:
Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
- 批准号:
8776659 - 财政年份:2014
- 资助金额:
$ 5.5万 - 项目类别:
Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
- 批准号:
9089705 - 财政年份:2014
- 资助金额:
$ 5.5万 - 项目类别:
Lab-To-Marketplace: Commercialization of a stretchable microelectrode array
实验室到市场:可拉伸微电极阵列的商业化
- 批准号:
8887394 - 财政年份:2014
- 资助金额:
$ 5.5万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Studentship