Transcriptional control of skeletal muscle insulin resistance
骨骼肌胰岛素抵抗的转录控制
基本信息
- 批准号:8463513
- 负责人:
- 金额:$ 28.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-24 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAllelesAttenuatedBindingBioenergeticsCarbonCell LineCell LineageCell NucleusCellsChIP-seqCommunicationComplexDataDevelopmentDiabetes MellitusDiseaseEpithelial CellsFamilyGene Expression ProfileGenetic TranscriptionGenomicsGlucoseGlucose-6-PhosphateHelix-Turn-Helix MotifsHyperglycemiaInsulinInsulin ResistanceKnock-outLeadMalignant NeoplasmsMammalsMediatingMitochondriaModelingMolecularMusMuscle CellsNon-Insulin-Dependent Diabetes MellitusNuclearNuclear ProteinsOrganellesOrganismOuter Mitochondrial MembranePeripheralPhysiologicalPlayProteinsPublishingRegulationRoleSeveritiesSiteSkeletal MuscleSourceTechniquesTestingTherapeutic InterventionThioredoxinTranscription CoactivatorTranscriptional ActivationTranscriptional RegulationTransgenic Organismsblood glucose regulationgenome-widegenome-wide analysisglucose disposalglucose sensorglucose uptakein vivoinsightmembermitochondrial dysfunctionmouse modelnovelnovel diagnosticsprognosticprogramspromoterprotein expressionprotein functionpublic health relevanceresearch studytissue culturetranscription factor
项目摘要
DESCRIPTION (provided by applicant): Understanding the earliest molecular changes that drive the genesis of type 2 diabetes may lead to the development of new diagnostics, prognostics, and potentially new targets for therapeutic intervention. We have discovered a new member of the basic-helix-loop-helix-zipper family of transcription factors called MondoA that we propose plays a critical role in skeletal muscle glucose homeostasis and insulin resistance. MondoA functions primarily as a transcriptional activator, binding to CACGTG genomic targets with its obligate heterodimeric partner Mlx. Several lines of evidence indicate that MondoA:Mlx complexes are key regulators of cellular bioenergetics. First, MondoA:Mlx complexes are not constitutively nuclear proteins, rather they shuttle between the outer mitochondrial membrane and the nucleus, suggesting that they facilitate communication between these two essential organelles. Second, MondoA:Mlx complexes accumulate in the nucleus, binding their target promoters to activate their expression under hyperglycemic conditions by sensing glucose-6-phosphate levels. Third, MondoA:Mlx complexes are required for transcriptional activation of at least 75 percent of glucose-induced targets, indicating that they are major regulators of the glucose-dependent transcriptome. Finally, MondoA is very highly expressed in skeletal muscle, which is a major site of glucose disposal and is transcriptionally active in a number of muscle cell lines. Together, we suggest that skeletal muscle is one of MondoA's primary sites of action. We hypothesize a critical function for MondoA in how skeletal muscle senses and responds to changes in glucose levels. One critical MondoA target is thioredoxin interacting protein (TXNIP). TXNIP has pleiotropic roles in glucose homeostasis and insulin resistance, which are mediated in part by its function as a negative regulator of peripheral glucose disposal. Consistent with TXNIP being a critical MondoA effector, MondoA is also a potent negative regulator of glucose uptake. As such, we hypothesize that the nuclear activity MondoA and its transcriptional targets may also drive skeletal muscle insulin resistance by negatively regulating glucose uptake. TXNIP is not the sole MondoA effector in attenuating glucose uptake, indicating that other MondoA transcriptional targets must also contribute. We propose to employ a conditional deletion allele of murine MondoA to specifically inactivate MondoA in skeletal muscle. In Aims 1, we will use this mouse model to determine MondoA's in vivo function in skeletal muscle glucose homeostasis and whether MondoA activity is required for skeletal muscle insulin resistance as our preliminary data suggest. Further, we propose comprehensive genomic approaches in Aim 2 to discover the direct and MondoA-dependent transcriptome in skeletal muscle. Finally, our preliminary data indicate that MondoA transcriptional activity is controlled by mitochondrial overload. We will test this model in Aim 3 and determine how MondoA and TXNIP function as potent negative regulators of glucose uptake.
描述(由申请人提供):了解驱动2型糖尿病发生的早期分子变化可能会导致新的诊断、预后和治疗干预的潜在新靶点的发展。我们发现了一个名为MondoA的碱性螺旋-环-螺旋-拉链转录因子家族的新成员,我们认为它在骨骼肌葡萄糖稳态和胰岛素抵抗中起着关键作用。MondoA主要作为转录激活因子,与其专性异二聚体伙伴Mlx结合到CACGTG基因组靶点。一些证据表明,MondoA:Mlx复合物是细胞生物能量学的关键调节因子。首先,MondoA:Mlx复合物不是核蛋白的组成部分,而是在线粒体外膜和细胞核之间穿梭,这表明它们促进了这两个基本细胞器之间的通信。其次,MondoA:Mlx复合物在细胞核中积累,结合其靶启动子,通过感知葡萄糖-6-磷酸水平激活其在高血糖条件下的表达。第三,MondoA:Mlx复合物是至少75%的葡萄糖诱导靶标转录激活所必需的,这表明它们是葡萄糖依赖性转录组的主要调节因子。最后,MondoA在骨骼肌中非常高表达,骨骼肌是葡萄糖处理的主要部位,在许多肌肉细胞系中转录活跃。总之,我们认为骨骼肌是MondoA的主要作用部位之一。我们假设MondoA在骨骼肌如何感知和响应葡萄糖水平变化方面具有关键功能。一个关键的MondoA靶点是硫氧还蛋白相互作用蛋白(TXNIP)。TXNIP在葡萄糖稳态和胰岛素抵抗中具有多效性作用,部分是通过其作为外周葡萄糖处理的负调节因子的功能介导的。与TXNIP是一个关键的MondoA效应一致,MondoA也是一个有效的葡萄糖摄取负调节因子。因此,我们假设核活性MondoA及其转录靶点也可能通过负性调节葡萄糖摄取来驱动骨骼肌胰岛素抵抗。TXNIP并不是唯一的MondoA抑制葡萄糖摄取的效应物,这表明其他的MondoA转录靶点也有一定的作用。我们建议使用小鼠MondoA的条件缺失等位基因特异性灭活骨骼肌中的MondoA。在Aims 1中,我们将使用该小鼠模型来确定MondoA在骨骼肌葡萄糖稳态中的体内功能,以及我们的初步数据表明,MondoA活性是否需要骨骼肌胰岛素抵抗。此外,我们在Aim 2中提出了全面的基因组方法来发现骨骼肌中直接和依赖mondoa的转录组。最后,我们的初步数据表明,MondoA转录活性受线粒体过载控制。我们将在Aim 3中测试该模型,并确定MondoA和TXNIP如何作为葡萄糖摄取的有效负调节因子发挥作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald E Ayer其他文献
Donald E Ayer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald E Ayer', 18)}}的其他基金
Huntsman Cancer Institute (HCI) Cancer Genetics, Epigenetics, Models, and Signaling (Cancer GEMS) Training Program
亨斯迈癌症研究所 (HCI) 癌症遗传学、表观遗传学、模型和信号传导(癌症 GEMS)培训计划
- 批准号:
10627604 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Huntsman Cancer Institute PathMaker Programs for Cancer Research
亨斯迈癌症研究所癌症研究 PathMaker 计划
- 批准号:
10474257 - 财政年份:2019
- 资助金额:
$ 28.81万 - 项目类别:
Huntsman Cancer Institute PathMaker Programs for Cancer Research
亨斯迈癌症研究所癌症研究 PathMaker 计划
- 批准号:
10661674 - 财政年份:2019
- 资助金额:
$ 28.81万 - 项目类别:
Huntsman Cancer Institute PathMaker Programs for Cancer Research
亨斯迈癌症研究所癌症研究 PathMaker 计划
- 批准号:
9792209 - 财政年份:2019
- 资助金额:
$ 28.81万 - 项目类别:
Huntsman Cancer Institute PathMaker Programs for Cancer Research
亨斯迈癌症研究所癌症研究 PathMaker 计划
- 批准号:
10005296 - 财政年份:2019
- 资助金额:
$ 28.81万 - 项目类别:
Transcriptional control of skeletal muscle insulin resistance
骨骼肌胰岛素抵抗的转录控制
- 批准号:
8299142 - 财政年份:2010
- 资助金额:
$ 28.81万 - 项目类别:
Transcriptional control of skeletal muscle insulin resistance
骨骼肌胰岛素抵抗的转录控制
- 批准号:
7918568 - 财政年份:2010
- 资助金额:
$ 28.81万 - 项目类别:
Transcriptional control of skeletal muscle insulin resistance
骨骼肌胰岛素抵抗的转录控制
- 批准号:
8076333 - 财政年份:2010
- 资助金额:
$ 28.81万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 28.81万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 28.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists