Mechanism of Mitochondrial Dysfunction in Mesenchymal Stem Cells During Aging
衰老过程中间充质干细胞线粒体功能障碍的机制
基本信息
- 批准号:8486853
- 负责人:
- 金额:$ 10.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgingApoptosisAreaBioenergeticsBiology of AgingBone DiseasesBone RegenerationBone ResorptionBone remodelingCardiovascular systemCell AgingCell SurvivalCell physiologyCellsDataDevelopmentDiabetes MellitusDiseaseEquilibriumEventFailureFemoral FracturesFractureFracture HealingGenetic ModelsGlycolysisGoalsHistologyHumanKnock-outKnockout MiceKnowledgeLeadLinkLiteratureMechanicsMentored Research Scientist Development AwardMesenchymal Stem CellsMetabolismMethodsMissionMitochondriaMolecularMusOsteoblastsOsteoclastsOsteogenesisOsteoporosisOutcome StudyOxidative PhosphorylationOxidative StressPathogenesisPermeabilityPrevention therapyProductionPropertyPublic HealthRecruitment ActivityResearchRoleSiteStem cellsSystemTestingTissuesUndifferentiatedUnited States National Institutes of HealthWild Type Mouseage relatedagedbasebonebone qualitycareercareer developmentcell agecyclophilin Ddesigndisabilityimprovedinhibitor/antagonistinnovationloss of functionmitochondrial dysfunctionmouse modelnovelnovel strategiesosteogenicpreventprogramspublic health relevancerepairedsanglifehrin Astem cell biology
项目摘要
DESCRIPTION (provided by applicant): The goal of this K01 Award application is to enhance career development of the Candidate, Dr. Eliseev. Under the guidance of Drs. Regis O'Keefe, Matthew Hilton and Paul Brookes, the Candidate will elucidate the link between bioenergetics and osteogenicity of mesenchymal stem cells (MSC) and aging-related changes in this link. These studies will serve as a vehicle for introducing Dr. Eliseev into research areas that are new to him, such as stem cells, bone remodeling and repair, aging, osteoporosis, and mouse genetic models. MSCs use glycolysis for energy production and switch to mitochondrial oxidative phosphorylation during osteogenic differentiation. This bioenergetic switch is disrupted in aging, diabetes and other disorders leading to decreased MSC osteogenicity and osteoporosis. Our long-term research goal is to understand how cell metabolism determines cell fate and how it can be manipulated for the purposes of prevention and therapies. The objective of this proposal is to determine the mechanism underlying changes in MSC bioenergetics during aging and its effect on MSC osteogenicity and bone quality. Activation of the mitochondrial permeability transition (MPT) is a well documented event in cardiovascular and other systems during aging. The role of the MPT in aged bone has not been elucidated. Based on our data and the literature, our central hypothesis is that bioenergetic failure and decreased viability due to the MPT disrupt osteogenic potential of aged MSCs, leading to osteoporosis and delayed fracture healing that can be reversed by inhibition of the MPT. Our specific aims are: (1) determine the mechanism of mitochondrial dysfunction in aged MSCs and its effect on MSC viability and osteogenicity. We hypothesize that the MPT is such a mechanism; (2) elucidate the effect of inhibition of the MPT on osteoporosis during aging. We hypothesize that this will improve bone quality in aged mice; and (3) determine the effect of inhibition of the MPT on fracture healing in aged mice. We hypothesize that this will accelerate fracture healing. To attain our aims we will use MSC biology methods; mouse genetic models of global or MSC-specific loss-of-function of the MPT; and novel pharmacological inhibitors. Our contribution here is expected to be a detailed understanding of how MSC bioenergetics is disrupted in aging and how it can be improved for the purposes of prevention and therapies. This is very significant because it will lead to new strategies for osteoporosis and fracture repair and provide significant benefits for public health. Our research will also advance the field of bone biology and aging by elucidating yet unknown mechanisms connecting MSC bioenergetics and osteogenicity. Our research is innovative because it departs from the status quo and puts impaired bioenergetics in MSCs in the center of pathogenesis of osteoporosis; and tests a novel approach, MPT inhibition, to treat osteoporosis and delayed fracture healing during aging.
描述(由申请人提供):此K 01奖申请的目标是提高候选人的职业发展,博士。在Regis O 'Keefe,Matthew希尔顿和Paul Brookes博士的指导下,候选人将阐明生物能量学和间充质干细胞(MSC)的成骨性之间的联系以及该联系中与衰老相关的变化。这些研究将作为将Eliseev博士引入他新的研究领域的工具,如干细胞,骨重建和修复,衰老,骨质疏松症和小鼠遗传模型。 MSCs利用糖酵解产生能量,并在成骨分化过程中转变为线粒体氧化磷酸化。这种生物能量转换在衰老、糖尿病和其他疾病中被破坏,导致MSC成骨性降低和骨质疏松症。我们的长期研究目标是了解细胞代谢如何决定细胞命运,以及如何操纵它以达到预防和治疗的目的。本提案的目的是确定衰老过程中MSC生物能量学变化的机制及其对MSC成骨性和骨质量的影响。线粒体通透性转换(MPT)的激活是一个有据可查的事件,在心血管和其他系统在老化过程中。MPT在老化骨中的作用尚未阐明。根据我们的数据和文献,我们的中心假设是,由于MPT破坏了老化MSC的成骨潜力,导致骨质疏松症和延迟骨折愈合,这可以通过抑制MPT来逆转。我们的具体目标是:(1)确定衰老MSC中线粒体功能障碍的机制及其对MSC活力和成骨性的影响。我们推测MPT是这样一种机制:(2)阐明MPT抑制对衰老过程中骨质疏松的影响。我们假设这将改善老年小鼠的骨质量;(3)确定抑制MPT对老年小鼠骨折愈合的影响。我们假设这将加速骨折愈合。为了实现我们的目标,我们将使用MSC生物学方法; MPT的整体或MSC特异性功能丧失的小鼠遗传模型;和新的药理学抑制剂。 我们在这里的贡献预计是详细了解MSC生物能量学如何在衰老中被破坏,以及如何为了预防和治疗的目的而改善。这是非常重要的,因为它将导致骨质疏松症和骨折修复的新策略,并为公共卫生提供显着的好处。我们的研究还将通过阐明连接MSC生物能量学和成骨性的未知机制来推进骨生物学和衰老领域。我们的研究是创新的,因为它从现状出发,将骨髓间充质干细胞中受损的生物能量学置于骨质疏松症发病机制的中心;并测试了一种新的方法,MPT抑制,以治疗骨质疏松症和衰老过程中骨折愈合延迟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Eliseev其他文献
Roman Eliseev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Eliseev', 18)}}的其他基金
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10349639 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10706978 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Mechanism of Mitochondrial Dysfunction in Mesenchymal Stem Cells During Aging
衰老过程中间充质干细胞线粒体功能障碍的机制
- 批准号:
8827247 - 财政年份:2013
- 资助金额:
$ 10.28万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8466932 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8177970 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8299020 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
相似国自然基金
Epac1/2通过蛋白酶体调控中性粒细胞NETosis和Apoptosis在急性肺损伤中的作用研究
- 批准号:LBY21H010001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Apoptosis/Ferroptosis双重激活效应的天然产物AlbiziabiosideA的抗肿瘤作用机制研究及其结构改造
- 批准号:81703335
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
双肝移植后Apoptosis和pyroptosis在移植物萎缩差异中的作用和供受者免疫微环境变化研究
- 批准号:81670594
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
Serp-2 调控apoptosis和pyroptosis 对肝脏缺血再灌注损伤的保护作用研究
- 批准号:81470791
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
APO-miR(multi-targeting apoptosis-regulatory miRNA)在前列腺癌中的表达和作用
- 批准号:81101529
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
放疗与细胞程序性死亡(APOPTOSIS)相关性及其应用研究
- 批准号:39500043
- 批准年份:1995
- 资助金额:9.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of an apoptosis biosensor for monitoring of breast cancer
开发用于监测乳腺癌的细胞凋亡生物传感器
- 批准号:
10719415 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Interrogating the Fgl2-FcγRIIB axis on CD8+ T cells: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
询问 CD8 T 细胞上的 Fgl2-FcγRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10605856 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Novel targeted therapy for FGFR inhibitor-resistant urothelial cancer and apoptosis based therapy for urothelial cancer
FGFR抑制剂耐药性尿路上皮癌的新型靶向治疗和基于细胞凋亡的尿路上皮癌治疗
- 批准号:
23K08773 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanistic analysis of apoptosis induction by HDAC inhibitors in head and neck cancer
HDAC抑制剂诱导头颈癌凋亡的机制分析
- 批准号:
23K15866 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Interrogating the Fgl2-FcgRIIB axis: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
探究 Fgl2-FcgRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10743485 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Investigating the role of apoptosis-resistance and the tumor environment on development and maintenance of sacrococcygeal teratomas
研究细胞凋亡抗性和肿瘤环境对骶尾部畸胎瘤发生和维持的作用
- 批准号:
10749797 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
The effects of glucose on immune cell apoptosis and mitochondrial membrane potential and the analysis of its mechanism by which glucose might modulate the immune functions.
葡萄糖对免疫细胞凋亡和线粒体膜电位的影响及其调节免疫功能的机制分析。
- 批准号:
22K09076 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
XAF1 IN P53 SIGNALING, APOPTOSIS AND TUMOR SUPPRESSION
P53 信号传导、细胞凋亡和肿瘤抑制中的 XAF1
- 批准号:
10583516 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Role of Thioredoxin system in regulation of autophagy-apoptosis cross talk in neurons: Uncovering Novel Molecular Interactions.
硫氧还蛋白系统在神经元自噬-凋亡串扰调节中的作用:揭示新的分子相互作用。
- 批准号:
RGPIN-2019-05371 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




