Mitochondrial metabolism and bone formation
线粒体代谢和骨形成
基本信息
- 批准号:10321534
- 负责人:
- 金额:$ 33.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdipocytesAgingBMP2 geneBinding SitesBiological AssayBiologyBone MarrowBrainCardiovascular PhysiologyCell RespirationCellsChondrocytesCyclophilin ADNA BindingDangerousnessDataDevelopmentDifferentiation AntigensDown-RegulationDrug TargetingEnergy MetabolismEnsureEventFractureGenesGeneticGenetic TranscriptionGoalsHeartHumanIGF1 geneImpairmentIn VitroInjuryKidneyKnock-outKnockout MiceKnowledgeLeadLiteratureMessenger RNAMetabolicMissionMitochondriaMusNeurosciencesOsteoblastsOsteogenesisOxidative PhosphorylationOxidative StressPathologicPathologyPharmacologyPhosphorylation InhibitionPhysiologyPublic HealthPublishingRegulationReporterReportingResearchRoleStressStromal CellsTestingTherapeuticTissuesTranscription RepressorTraumaUnited States National Institutes of Healthbasebiomechanical testbonebone fracture repairbone lossbone marrow mesenchymal stem cellbone marrow stromal stem cellbone strengthconditional knockoutcortical bonecyclophilin Ddisabilityimprovedin vivoindexinginhibitorischemic injuryloss of functionmitochondrial dysfunctionmitochondrial metabolismmitochondrial permeability transition poremuscle physiologynovelosteoblast differentiationosteogenicprogramspromotersensorstem cell differentiationsubcutaneoussubstantia spongiosatargeted treatmenttherapeutic target
项目摘要
Our long-term goal is to understand the role and regulation of mitochondrial metabolism in bone physiology
and pathology. Unlike other fields, such as cardiovascular and muscle physiology and neuroscience, to date
very little effort has been directed towards mitochondrial research in the bone field. This presents an immense
knowledge gap and a critical barrier to developing novel mitochondria-targeted strategies for bone pathologies,
such as aging and trauma which are known to be associated with mitochondrial dysfunction. This also gives
special significance to our mitochondria-centered proposal. Our objective here is to determine the mechanism
controlling mitochondrial activity during osteoblastic (OB) differentiation of bone marrow stromal cells (BMSC,
a.k.a. bone marrow mesenchymal stem cells) and test if strategies aimed at improving mitochondrial metabo-
lism stimulate OB differentiation and bone formation. Our published and new unpublished data indicate that
during OB differentiation, mitochondria fuse into a network, a phenomenon known to maximize the fidelity for
oxidative phosphorylation (OxPhos). A dangerous byproduct of active OxPhos is oxidative stress which pro-
motes opening of a large Mitochondrial Permeability Transition Pore (MPTP). MPTP opening impairs mito-
chondrial integrity and function. Cyclophilin D (CypD) is a key positive regulator of MPTP. It is, thus beneficial
for cells undergoing a shift towards oxidative metabolism, e.g. BMSCs differentiating into OBs, to inactivate
CypD/MPTP. We indeed found that as mitochondria become fused and activated during OB differentiation,
CypD is downregulated at the mRNA level ensuring protection against oxidative stress and supporting OxPhos
and progression of OB program. Moreover, our data indicate that CypD genetic deletion in knockout (KO) mice
or pharmacological inhibition is especially efficient in supporting OB oxidative and bone forming function under
pathological stress, such as in aging and fracture. We recently reported that CypD KO mice are well protected
against bone loss in aging. This is consistent with the literature showing that brain, heart, and kidney tissues of
CypD KO mice are protected against degeneration in aging or ischemic injury. All this led us to hypothesize
that mitochondrial fusion and CypD downregulation leading to activation of OxPhos and inhibition of MPTP dur-
ing OB differentiation, are critical for OB differentiation. To test this hypothesis and fulfill our objective, we will:
1) characterize the mechanism by which mitochondria are activated during OB differentiation focusing on mito-
chondrial fusion; 2) characterize the role and regulation of CypD/MPTP during OB differentiation; and 3) evalu-
ate CypD as a therapeutic target to improve bone formation in fracture healing and aging. These studies will
provide comprehensive understanding of regulation of mitochondrial metabolism during OB differentiation and
a rationale for developing new mitochondria-targeted therapeutic strategies in bone.
我们的长期目标是了解线粒体代谢在骨生理学中的作用和调节
和病理学。迄今为止,与心血管、肌肉生理学和神经科学等其他领域不同
在骨领域的线粒体研究方面所做的努力很少。这呈现出巨大的
知识差距和开发针对骨病理学的新型线粒体靶向策略的关键障碍,
例如已知与线粒体功能障碍有关的衰老和创伤。这也给出了
对我们以线粒体为中心的提案具有特殊意义。我们的目标是确定机制
在骨髓基质细胞(BMSC、
又名骨髓间充质干细胞)并测试是否旨在改善线粒体代谢的策略
lism 刺激 OB 分化和骨形成。我们已发布和新未发布的数据表明
在 OB 分化过程中,线粒体融合成一个网络,这种现象已知可以最大限度地提高 OB 的保真度
氧化磷酸化(OxPhos)。活性 OxPhos 的一个危险副产品是氧化应激,它会促进
微粒打开了一个大的线粒体渗透性转换孔(MPTP)。 MPTP 开放损害线粒体
软骨的完整性和功能。亲环蛋白 D (CypD) 是 MPTP 的关键正向调节因子。因此,这是有益的
对于正在向氧化代谢转变的细胞,例如BMSCs 分化为 OB,从而失活
CypD/MPTP。我们确实发现,随着线粒体在 OB 分化过程中融合并激活,
CypD 在 mRNA 水平上下调,确保免受氧化应激并支持 OxPhos
和 OB 计划的进展。此外,我们的数据表明敲除(KO)小鼠中的 CypD 基因缺失
或药物抑制在支持 OB 氧化和骨形成功能方面特别有效
病理应激,例如衰老和骨折。我们最近报道 CypD KO 小鼠受到很好的保护
对抗衰老过程中的骨质流失。这与文献表明,大脑、心脏和肾脏组织
CypD KO 小鼠可免受衰老或缺血性损伤引起的退化。所有这一切使我们做出假设
线粒体融合和 CypD 下调导致 OxPhos 激活并抑制 MPTP
OB 分化,对于 OB 分化至关重要。为了检验这一假设并实现我们的目标,我们将:
1) 描述 OB 分化过程中线粒体被激活的机制,重点关注线粒体
软骨融合; 2) 表征CypD/MPTP在OB分化过程中的作用和调节; 3)评估-
将 CypD 作为改善骨折愈合和衰老过程中骨形成的治疗靶点。这些研究将
提供对 OB 分化过程中线粒体代谢调节的全面了解
开发新的线粒体靶向骨治疗策略的基本原理。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mitochondrial permeability transition regulator, cyclophilin D, is transcriptionally activated by C/EBP during adipogenesis.
- DOI:10.1016/j.jbc.2023.105458
- 发表时间:2023-12
- 期刊:
- 影响因子:4.8
- 作者:Yu, Chen;Sautchuk, Rubens Jr;Martinez, John;Eliseev, Roman A
- 通讯作者:Eliseev, Roman A
Bone morphogenic protein-2 signaling in human disc degeneration and correlation to the Pfirrmann MRI grading system.
- DOI:10.1016/j.spinee.2021.03.002
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Hollenberg AM;Maqsoodi N;Phan A;Huber A;Jubril A;Baldwin AL;Yokogawa N;Eliseev RA;Mesfin A
- 通讯作者:Mesfin A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Eliseev其他文献
Roman Eliseev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Eliseev', 18)}}的其他基金
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10349639 - 财政年份:2022
- 资助金额:
$ 33.54万 - 项目类别:
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10706978 - 财政年份:2022
- 资助金额:
$ 33.54万 - 项目类别:
Mechanism of Mitochondrial Dysfunction in Mesenchymal Stem Cells During Aging
衰老过程中间充质干细胞线粒体功能障碍的机制
- 批准号:
8827247 - 财政年份:2013
- 资助金额:
$ 33.54万 - 项目类别:
Mechanism of Mitochondrial Dysfunction in Mesenchymal Stem Cells During Aging
衰老过程中间充质干细胞线粒体功能障碍的机制
- 批准号:
8486853 - 财政年份:2013
- 资助金额:
$ 33.54万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8466932 - 财政年份:2011
- 资助金额:
$ 33.54万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8177970 - 财政年份:2011
- 资助金额:
$ 33.54万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8299020 - 财政年份:2011
- 资助金额:
$ 33.54万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 33.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 33.54万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 33.54万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 33.54万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 33.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 33.54万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 33.54万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 33.54万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 33.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 33.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




