Mechanism of Mitochondrial Dysfunction in Mesenchymal Stem Cells During Aging
衰老过程中间充质干细胞线粒体功能障碍的机制
基本信息
- 批准号:8827247
- 负责人:
- 金额:$ 10.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgingApoptosisAreaBioenergeticsBiology of AgingBone DiseasesBone RegenerationBone ResorptionBone remodelingCardiovascular systemCell AgingCell SurvivalCell physiologyCellsDataDevelopmentDiabetes MellitusDiseaseEquilibriumEventFailureFemoral FracturesFractureFracture HealingGenetic ModelsGlycolysisGoalsHealthHistologyHumanKnock-outKnockout MiceKnowledgeLeadLinkLiteratureMechanicsMentored Research Scientist Development AwardMesenchymal Stem CellsMetabolismMethodsMissionMitochondriaMolecularMusOsteoblastsOsteoclastsOsteogenesisOsteoporosisOutcome StudyOxidative PhosphorylationOxidative StressPathogenesisPermeabilityPrevention therapyProductionPropertyPublic HealthRecruitment ActivityResearchRoleSiteStem cellsSystemTestingTissuesUndifferentiatedUnited States National Institutes of HealthWild Type Mouseage relatedagedbasebonebone qualitycareercareer developmentcell agecyclophilin Ddesigndisabilityimprovedinhibitor/antagonistinnovationloss of functionmicroCTmitochondrial dysfunctionmouse modelnovelnovel strategiesosteogenicpreventprogramsrepairedsanglifehrin Astem cell biology
项目摘要
DESCRIPTION (provided by applicant): The goal of this K01 Award application is to enhance career development of the Candidate, Dr. Eliseev. Under the guidance of Drs. Regis O'Keefe, Matthew Hilton and Paul Brookes, the Candidate will elucidate the link between bioenergetics and osteogenicity of mesenchymal stem cells (MSC) and aging-related changes in this link. These studies will serve as a vehicle for introducing Dr. Eliseev into research areas that are new to him, such as stem cells, bone remodeling and repair, aging, osteoporosis, and mouse genetic models. MSCs use glycolysis for energy production and switch to mitochondrial oxidative phosphorylation during osteogenic differentiation. This bioenergetic switch is disrupted in aging, diabetes and other disorders leading to decreased MSC osteogenicity and osteoporosis. Our long-term research goal is to understand how cell metabolism determines cell fate and how it can be manipulated for the purposes of prevention and therapies. The objective of this proposal is to determine the mechanism underlying changes in MSC bioenergetics during aging and its effect on MSC osteogenicity and bone quality. Activation of the mitochondrial permeability transition (MPT) is a well documented event in cardiovascular and other systems during aging. The role of the MPT in aged bone has not been elucidated. Based on our data and the literature, our central hypothesis is that bioenergetic failure and decreased viability due to the MPT disrupt osteogenic potential of aged MSCs, leading to osteoporosis and delayed fracture healing that can be reversed by inhibition of the MPT. Our specific aims are: (1) determine the mechanism of mitochondrial dysfunction in aged MSCs and its effect on MSC viability and osteogenicity. We hypothesize that the MPT is such a mechanism; (2) elucidate the effect of inhibition of the MPT on osteoporosis during aging. We hypothesize that this will improve bone quality in aged mice; and (3) determine the effect of inhibition of the MPT on fracture healing in aged mice. We hypothesize that this will accelerate fracture healing. To attain our aims we will use MSC biology methods; mouse genetic models of global or MSC-specific loss-of-function of the MPT; and novel pharmacological inhibitors. Our contribution here is expected to be a detailed understanding of how MSC bioenergetics is disrupted in aging and how it can be improved for the purposes of prevention and therapies. This is very significant because it will lead to new strategies for osteoporosis and fracture repair and provide significant benefits for public health. Our research will also advance the field of bone biology and aging by elucidating yet unknown mechanisms connecting MSC bioenergetics and osteogenicity. Our research is innovative because it departs from the status quo and puts impaired bioenergetics in MSCs in the center of pathogenesis of osteoporosis; and tests a novel approach, MPT inhibition, to treat osteoporosis and delayed fracture healing during aging.
描述(由申请人提供):该K01奖励申请的目标是增强候选人Eliseev博士的职业发展。在博士的指导下。候选人Regis O'Keefe,Matthew Hilton和Paul Brookes将阐明间质干细胞(MSC)的生物能和成骨之间的联系以及与衰老相关的变化。这些研究将作为将Eliseev博士引入新的研究领域的工具,例如干细胞,骨骼重塑和修复,衰老,骨质疏松症和小鼠遗传模型。 MSC使用糖酵解来产生能量,并在成骨分化过程中转变为线粒体氧化磷酸化。这种生物能开关破坏了衰老,糖尿病和其他疾病,导致MSC的骨质发育和骨质疏松症降低。我们的长期研究目标是了解细胞代谢如何决定细胞命运以及如何为预防和疗法而被操纵。该提案的目的是确定衰老过程中MSC生物能力变化的基本机制及其对MSC成骨的影响和骨骼质量的影响。线粒体通透性过渡(MPT)的激活是衰老期间心血管和其他系统中有据可查的事件。 MPT在老年骨中的作用尚未阐明。基于我们的数据和文献,我们的中心假设是,由于MPT破坏了老化的MSC的生物能力衰竭和生存能力降低,导致骨质疏松症和延迟骨折愈合可能会因MPT抑制而逆转。我们的具体目的是:(1)确定老年MSC中线粒体功能障碍的机理及其对MSC生存能力和成骨性的影响。我们假设MPT是一种机制。 (2)阐明MPT在衰老过程中抑制MPT对骨质疏松症的影响。我们假设这将改善老年小鼠的骨质质量。 (3)确定MPT抑制对老年小鼠断裂愈合的影响。我们假设这将加速骨折愈合。为了实现我们的目标,我们将使用MSC生物学方法; MPT的全球或MSC特异性功能丧失的小鼠遗传模型;和新型的药理学抑制剂。 预计我们在这里做出的贡献将是对MSC生物能学如何在衰老中破坏以及如何在预防和疗法的目的中进行改进的详细理解。这是非常重要的,因为它将导致骨质疏松和骨折修复的新策略,并为公共卫生带来重大利益。我们的研究还将通过阐明连接MSC生物能学和成骨的机制来推动骨生物学和衰老领域。我们的研究具有创新性,因为它偏离了现状,并在骨质疏松症发病机理的中心将MSC中的生物能学受损。并测试一种新型方法,即MPT抑制,以治疗骨质疏松症和衰老过程中延迟骨折愈合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Eliseev其他文献
Roman Eliseev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Eliseev', 18)}}的其他基金
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10349639 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10706978 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Mechanism of Mitochondrial Dysfunction in Mesenchymal Stem Cells During Aging
衰老过程中间充质干细胞线粒体功能障碍的机制
- 批准号:
8486853 - 财政年份:2013
- 资助金额:
$ 10.28万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8466932 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8177970 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8299020 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
相似国自然基金
基于巨噬细胞表型转变探讨BTSA1诱导衰老肌成纤维细胞凋亡及促肺纤维化消退的机制
- 批准号:82370077
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
STAB1调控Fas/FasL介导牦牛胎盘滋养层细胞凋亡及胎盘炎症性流产的作用与机制研究
- 批准号:32360836
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
ATAD3A琥珀酰化调控mtDNA损伤-泛凋亡反应轴在心梗后心衰中的作用研究
- 批准号:82300434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胸腺肽α-1介导凋亡小体RNA改善DC功能增强TNBC化疗后抗肿瘤免疫应答的机制研究
- 批准号:82303959
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LSD1通过使组蛋白H3K4位点去甲基化促进自噬参与肾小管上皮细胞凋亡和肾脏纤维化的机制研究
- 批准号:82300769
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
- 批准号:
10735778 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Examining the role of immune activation in transposon-triggered sterility.
检查免疫激活在转座子触发的不育中的作用。
- 批准号:
10748032 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
An Innovative Two-Step Therapeutic Strategy to Maximize the Effect of Stem Cell Therapy for Post-Traumatic Osteoarthritis
创新的两步治疗策略可最大限度地发挥干细胞治疗创伤后骨关节炎的效果
- 批准号:
10643442 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别: