Cytoskeletal Motors and Scaffolds in Membrane Dynamics and Motility

膜动力学和运动中的细胞骨架马达和支架

基本信息

  • 批准号:
    9143338
  • 负责人:
  • 金额:
    $ 7.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-04-26 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The microtubule and actin cytoskeletons are essential for the movement, polarization, sorting, and morphogenesis of intracellular membrane compartments. Molecular motors, scaffolding proteins, and associated filaments are recruited to membranes to power diverse trafficking events that have different force, power, kinetic, and transport requirements. Defining the mechanisms of trafficking requires understanding how different motor isoforms and families work alone and in teams, and how motors and filaments work with the scaffolding proteins and adapters that link them to membranes. Determining these mechanisms requires a detailed understanding of: the cellular organization and dynamics of the cytoskeleton and membranes; the spatial, kinetic, and mechanical relationship of different motors and filaments; the structural and biophysical properties of cytoskeletal-membrane assemblies; and the biophysical parameters that define the capabilities and mechanisms of motors and scaffolds when operating under working conditions. To this end, we assembled an extraordinarily strong scientific team with expertise in cell biology, biochemistry, structural biology, structural dynamics, and technology-development to define the role of the cytoskeleton and molecular motors in trafficking. Our team includes pioneers in the use of state-of-the-art imaging, single-molecule, and structural techniques to discover how cytoskeletal proteins function in complex cellular events. High-resolution live-cell microscopy, reconstituted cytoskeletal geometries using microfabrication and dielectrophoresis, X-ray crystallography, nanometer-resolved fluorescence tracking, single-molecule fluorescence polarization, optical trapping, and advanced biochemical techniques will be applied in highly collaborative studies to understand how motors, scaffolds, and filaments work together to power membrane dynamics. The projects and investigators are interdependent and are closely linked through research goals and common technologies, and the Aims were formulated to capitalize on the unique strengths of the team members while taking advantage of extensive synergies between the groups. We will focus on the following four Aims: (1) Investigate the Dynamics of Molecular Motors in Organelle Transport and Membrane Remodeling; (2) Investigate the Structural, Biochemical, and Cellular Properties of Cytoskeleton-Membrane Scaffolds in Organelle Morphogenesis and Motility; (3) Discover the Mechanical and Biochemical Adaptations of Membrane- Associated Motors and Scaffolds; (4) Investigate the Structural Dynamics of Myosin, Dynein and Motor Collections.
描述(由申请人提供):微管和肌动蛋白细胞骨架对于细胞内膜区室的运动、极化、分选和形态发生至关重要。分子马达、支架蛋白和相关的细丝被招募到膜上,为具有不同力、功率、动力学和运输要求的各种运输事件提供动力。定义贩运机制需要了解不同的运动亚型和家族如何单独和团队工作,以及运动和细丝如何与将它们连接到膜的支架蛋白和适配器一起工作。确定这些机制需要详细了解:细胞骨架和膜的细胞组织和动力学;不同马达和细丝的空间,动力学和机械关系;细胞膜组件的结构和生物物理特性;以及定义马达和支架在工作条件下操作时的能力和机制的生物物理参数。为此,我们组建了一支非常强大的科学团队,他们拥有细胞生物学,生物化学,结构生物学,结构动力学和技术开发方面的专业知识,以确定细胞骨架和分子马达在贩运中的作用。我们的团队包括使用最先进的成像,单分子和结构技术来发现细胞骨架蛋白在复杂细胞事件中的功能的先驱。高分辨率活细胞显微镜,使用微加工和介电泳,X射线晶体学,纳米分辨荧光跟踪,单分子荧光偏振,光学捕获和先进的生物化学技术重建细胞骨架几何形状将应用于高度合作的研究,以了解电机,支架和细丝如何共同工作,为膜动力学提供动力。项目和研究人员是相互依赖的,并通过研究目标和共同技术紧密联系在一起,制定目标是为了利用团队成员的独特优势,同时利用团队之间的广泛协同作用。本课程将围绕以下四个方面展开:(1)研究细胞器运输和膜重构中的分子马达动力学;(2)研究细胞器-膜支架在细胞器形态发生和运动中的结构、生物化学和细胞特性;(3)发现膜相关马达和支架的机械和生物化学适应;(4)研究细胞器-膜支架的结构和生物化学适应。(4)研究肌球蛋白、动力蛋白和运动集合的结构动力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

E. Michael Ostap其他文献

Buffer Exchange while Probing a Single Actomyosin Interaction in the Optical Trap
  • DOI:
    10.1016/j.bpj.2019.11.2445
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Aaron Snoberger;Donald A. Winkelmann;E. Michael Ostap;Yale E. Goldman
  • 通讯作者:
    Yale E. Goldman
Biochemical and Functional Characterization of the Interaction of Myo1c with 14-3-3
  • DOI:
    10.1016/j.bpj.2017.11.1790
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Huan-Hong Ji;E. Michael Ostap
  • 通讯作者:
    E. Michael Ostap
Beta-Cardiac Myosin with an HCM Mutation (R712L) has an Inhibited Working Stroke that is Rescued by the Drug Omecamtiv Mecarbil
  • DOI:
    10.1016/j.bpj.2019.11.1082
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Aaron Snoberger;Bipasha Barua;Jennifer L. Atherton;Eva Forgacs;Yale E. Goldman;Donald A. Winkelmann;E. Michael Ostap
  • 通讯作者:
    E. Michael Ostap
Force Generation by Membrane-Bound Myo1c, a Single Molecule Study
  • DOI:
    10.1016/j.bpj.2012.11.3547
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Serapion Pyrpassopoulos;Henry Shuman;E. Michael Ostap
  • 通讯作者:
    E. Michael Ostap
Kinetics Of Myo1c Association To And Dissociation From Phosphoinositide-containing Vesicles
  • DOI:
    10.1016/j.bpj.2008.12.3870
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jennine M. Dawicki McKenna;E. Michael Ostap
  • 通讯作者:
    E. Michael Ostap

E. Michael Ostap的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('E. Michael Ostap', 18)}}的其他基金

2014 Muscle and Molecular Motors Gordon Research Conference
2014年肌肉与分子马达戈登研究会议
  • 批准号:
    8714731
  • 财政年份:
    2014
  • 资助金额:
    $ 7.24万
  • 项目类别:
Cellular regulation of myosin-I
肌球蛋白-I 的细胞调节
  • 批准号:
    8000052
  • 财政年份:
    2010
  • 资助金额:
    $ 7.24万
  • 项目类别:
Mechano-Chemistry and Regulation of Myosin I
肌球蛋白 I 的机械化学和调控
  • 批准号:
    7504375
  • 财政年份:
    2007
  • 资助金额:
    $ 7.24万
  • 项目类别:
Training in Muscle Biology and Muscle Disease
肌肉生物学和肌肉疾病培训
  • 批准号:
    8654491
  • 财政年份:
    2006
  • 资助金额:
    $ 7.24万
  • 项目类别:
Training in Muscle Biology and Muscle Disease
肌肉生物学和肌肉疾病培训
  • 批准号:
    7413464
  • 财政年份:
    2006
  • 资助金额:
    $ 7.24万
  • 项目类别:
Training in Muscle Biology and Muscle Disease
肌肉生物学和肌肉疾病培训
  • 批准号:
    10206730
  • 财政年份:
    2006
  • 资助金额:
    $ 7.24万
  • 项目类别:
Training in Muscle Biology and Muscle Disease
肌肉生物学和肌肉疾病培训
  • 批准号:
    10441334
  • 财政年份:
    2006
  • 资助金额:
    $ 7.24万
  • 项目类别:
Training in Muscle Biology and Muscle Disease
肌肉生物学和肌肉疾病培训
  • 批准号:
    7066261
  • 财政年份:
    2006
  • 资助金额:
    $ 7.24万
  • 项目类别:
Training in Muscle Biology and Muscle Disease
肌肉生物学和肌肉疾病培训
  • 批准号:
    9976453
  • 财政年份:
    2006
  • 资助金额:
    $ 7.24万
  • 项目类别:
Training in Muscle Biology and Muscle Disease
肌肉生物学和肌肉疾病培训
  • 批准号:
    8253710
  • 财政年份:
    2006
  • 资助金额:
    $ 7.24万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.24万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.24万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.24万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 7.24万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 7.24万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 7.24万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 7.24万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 7.24万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 7.24万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 7.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了