Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
基本信息
- 批准号:8672892
- 负责人:
- 金额:$ 40.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAneuploidyBiochemicalBiological AssayBiological ModelsBiophysicsBrainCell divisionCellsCellular biologyChromosome SegregationChromosomesComputer SimulationCongenital AbnormalityDaughterEnergy-Generating ResourcesEnsureEquilibriumFeedbackFilamentFilopodiaG1/S TransitionGenesGeneticGrantGrowthGuanosine TriphosphateHomologous GeneHydrolysisInheritedKinesinLeadLengthMeasurementMeasuresMethodsMicrotubule DepolymerizationMicrotubule-Associated ProteinsMicrotubulesMitosisMitotic spindleMolecularMolecular and Cellular BiologyMorphologyMothersMotorNeuronsOrganellesPhasePolymerasePolymersPost-Translational Protein ProcessingPropertyProtein IsoformsProteinsRegulationRoleSaccharomycetalesSchemeStereociliumSystemTechniquesTestingTissuesTubulinWorkYeastsbasecancer cellcell motilitycellular microvillusgenetic analysishuman diseaseinsightmathematical modelnovelpolymerizationpublic health relevancesegregationsingle moleculeyeast protein
项目摘要
Summary/Abstract
A fundamental, but poorly understood, problem in cell biology is how the sizes of organelles are controlled. The
lengths of mitotic spindles and axonemes, for example, vary by as little as a few per cent between cells of the
same type. Furthermore, the correct size and morphology are essential for function-mitotic spindles for cell
division and axonemes for motility. Cells regulate the sizes of these organelles by tightly controlling the lengths
of their constituent microtubules. In the absence of a molecular ruler that templates microtubule length, it is
thought that length control results from a delicate balance between polymerization and depolymerization of the
microtubules. How this is achieved is not known.
! Based on our previous work in which we showed that the motor kinesin-8 Kip3 is a length-dependent
microtubule depolymerase, we hypothesize that motor proteins, in conjunction with other microtubule-
associated proteins (MAPs), can provide feedback between length and dynamics that tightly regulates the
lengths of microtubules.
! The general aim of this grant is to use single-molecule techniques, together with mathematical
modeling, to understand how two additional proteins-the yeast kinesin Kip2 and the yeast homolog of the
vertebrate polymerase XMAP215, Stu2-together with Kip3, regulate the lengths of yeast microtubules. We
have devised a novel purification scheme for native budding-yeast tubulin and this allows us to employ yeast
as our model system, which has distinct advantages due to the small number of tubulin isoforms and the
absence of potentially confounding post-translational modifications found in vertebrate, and in particular brain,
tubulin.
! Our specific aims are to (1) characterize the acceleration of growth of yeast microtubules by Stu2, (ii)
determine how Kip2 promotes microtubule assembly, and (iii) examine the precision with which Kip3, in
combination with Kip2 and Stu2, controls microtubule lengths. These studies will provide important insight into
the assembly and function of the mitotic spindle and establish principles of length regulation that will be
applicable to other biomedically relevant organellar systems such axonemes, microvilli, stereocilia and
filopodia.
总结/摘要
细胞生物学中一个基本但知之甚少的问题是细胞器的大小如何控制。的
例如,有丝分裂纺锤体和轴丝的长度在细胞之间的变化只有百分之几。
一样的此外,正确的大小和形态对于细胞的有丝分裂纺锤体功能是必不可少的。
分裂和轴丝的运动。细胞通过严格控制这些细胞器的长度来调节它们的大小
它们的组成微管。在没有一个模板微管长度的分子标尺的情况下,
认为长度控制是由聚合物的聚合和解聚之间的微妙平衡引起的。
微管这是如何实现的尚不清楚。
!基于我们以前的工作,我们发现运动驱动蛋白-8 Kip 3是一个长度依赖性的,
微管解聚酶,我们假设马达蛋白,与其他微管-
相关蛋白(MAPs),可以提供长度和动态之间的反馈,严格调节细胞的生长。
微管的长度
!这项资助的总体目标是使用单分子技术,
模型,以了解两个额外的蛋白质-酵母驱动蛋白Kip 2和酵母同系物的
脊椎动物聚合酶XMAP 215,Stu 2-与Kip 3一起调节酵母微管的长度。我们
我设计了一种新的天然芽殖酵母微管蛋白的纯化方案,这使我们能够使用酵母
作为我们的模型系统,由于微管蛋白同种型的数量少,
在脊椎动物,特别是脑,
微管蛋白
!我们的具体目标是(1)表征Stu 2对酵母微管生长的加速作用,(ii)
确定Kip 2如何促进微管组装,以及(iii)检查Kip 3的精确性,
与Kip 2和Stu 2的组合控制微管长度。这些研究将提供重要的见解,
有丝分裂纺锤体的组装和功能,并建立长度调节的原则,
适用于其他生物医学相关的细胞器系统,如轴丝,微绒毛,静纤毛和
丝状伪足
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathon Howard其他文献
Jonathon Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathon Howard', 18)}}的其他基金
Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
树突结构:数据驱动模型连接分子和形态学
- 批准号:
10308521 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10441383 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10643705 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
树突结构:数据驱动模型连接分子和形态学
- 批准号:
10533281 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10221743 - 财政年份:2020
- 资助金额:
$ 40.51万 - 项目类别:
Cell Biological Limitations Constrain Dendritic Branching Morphology and Neuronal Function
细胞生物学限制限制了树突分支形态和神经元功能
- 批准号:
9146993 - 财政年份:2015
- 资助金额:
$ 40.51万 - 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
- 批准号:
8842141 - 财政年份:2014
- 资助金额:
$ 40.51万 - 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
- 批准号:
9220838 - 财政年份:2014
- 资助金额:
$ 40.51万 - 项目类别:
MECHANICS OF KINESIN--A MICROTUBULE BASED MOTOR PROTEIN
驱动蛋白的机制——一种基于微管的运动蛋白
- 批准号:
2080145 - 财政年份:1990
- 资助金额:
$ 40.51万 - 项目类别:
Mechanics of Kinesin: a Microtubule-Based Motor Protein
驱动蛋白的力学:一种基于微管的运动蛋白
- 批准号:
6874904 - 财政年份:1990
- 资助金额:
$ 40.51万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 40.51万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 40.51万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 40.51万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 40.51万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 40.51万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 40.51万 - 项目类别:














{{item.name}}会员




