Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
树突结构:数据驱动模型连接分子和形态学
基本信息
- 批准号:10533281
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectBindingBiologicalBirthCellsCessation of lifeCytoskeletal ProteinsDataDendritesDevelopmentDifferential EquationDimensionsDiseaseDrosophila genusEtiologyFractalsFunctional disorderGeneticGenetic DiseasesGenotypeGoalsGrowthImageKineticsLeadLengthMarkov ChainsMeasurementMeasuresMicrotubule-Associated ProteinsModelingMolecularMorphogenesisMorphologyMotorMutationNervous SystemNeurologicNeuronsOutcomeOutputPhenotypePositioning AttributeProcessReportingResearchResolutionShapesStructureTestingTimeTractioncell typedata-driven modeldopaminergic neuronexperimental studyflygenetic manipulationinformation processinginsightkinetic modellive cell imagingmathematical modelmulti-scale modelingmultiscale datanovelpredictive modelingsimulationtemporal measurementtheoriestool
项目摘要
PROJECT SUMMARY
Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
The highly branched structures of dendritic arbors enable the extraordinary connectivity and
information-processing power of the nervous system. Altered dendritic morphologies are often
associated with neurological conditions and diseases. While we know many molecular
components underlying dendritic growth and structure through genetic and cell biological studies,
we still do not understand how molecular interactions generate dendritic arbors, which are
thousands to millions of times larger than the constituent molecules.
The overall goal of this application is to develop data-driven models that predict,
quantitatively, dendritic growth in Drosophila Class IV da neurons. These cells are chosen
because their dendrites can be imaged with outstanding spatial and temporal resolution, and the
genetic tools in flies facilitate molecular manipulations. Our central hypothesis is that the growing
and shrinking tips of dendrites constitute an intermediate level of organization between molecules
and morphology. This allows us to divide the large gap between genotype and phenotype into
two parts: the first is from molecules to dendrite tips, and the second is from dendrite tips to
morphology. The second part will be bridged using models.
To attain our overall objective, we will pursue the following three specific aims: (i) We will
formulate kinetic rules underlying the dynamics of dendritic tips using high-resolution, live-cell
imaging to measure the birth and death of tips through branching and retraction, and the transition
rates between different velocity states. (ii) We will develop multi-scale mathematical models that
take as input the data such as obtained in Aim 1 and predict morphologies, which will be compared
to real dendritic arbors. (iii) We will genetically perturb cytoskeletal proteins and use the models
to test whether the effects on tip dynamics account for the altered dendrite structures. The
expected outcome is mechanistic understanding of how morphological phenotypes emerge from
molecular processes occurring at the level of dendrite tips. These results will positively impact the
field by bridging genotype to phenotype and by providing insight into the pathophysiology of
genetic disorders that affect neuronal structures.
项目摘要
枝晶结构:从分子到形态的数据驱动模型
树枝状乔木的高度分支结构使其具有非凡的连通性,
神经系统的信息处理能力。改变的枝晶形态通常
与神经系统疾病有关。虽然我们知道许多分子
通过遗传学和细胞生物学研究,
我们仍然不明白分子间的相互作用是如何产生树状结构的,
比组成分子大几千到几百万倍。
该应用程序的总体目标是开发数据驱动的模型,
定量地,果蝇IV类da神经元的树突生长。这些细胞被选中
因为它们的树突可以以出色的空间和时间分辨率成像,
果蝇的遗传工具促进了分子操作。我们的核心假设是,
而收缩的枝晶尖端构成了分子之间的中间层次的组织
和形态学。这使我们能够将基因型和表型之间的巨大差距分为
两部分:第一部分是从分子到枝晶尖端,第二部分是从枝晶尖端到
形态学第二部分将使用模型进行衔接。
为达致整体目标,我们会致力达致以下三个具体目标:
使用高分辨率的活细胞技术,
成像来测量通过分支和收缩的尖端的出生和死亡,以及过渡
不同速度状态之间的速率。(ii)我们将开发多尺度数学模型,
将目标1中获得的数据作为输入,并预测形态,将进行比较
到真实的树枝状乔木。(iii)我们将从基因上扰乱细胞骨架蛋白,
以测试对尖端动力学的影响是否解释了改变的枝晶结构。的
预期的结果是机械的理解形态表型如何出现,
在枝晶尖端水平发生的分子过程。这些成果将对
通过将基因型与表型联系起来,并通过提供对
影响神经结构的遗传疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathon Howard其他文献
Jonathon Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathon Howard', 18)}}的其他基金
Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
树突结构:数据驱动模型连接分子和形态学
- 批准号:
10308521 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10441383 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10643705 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10221743 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Cell Biological Limitations Constrain Dendritic Branching Morphology and Neuronal Function
细胞生物学限制限制了树突分支形态和神经元功能
- 批准号:
9146993 - 财政年份:2015
- 资助金额:
$ 41.88万 - 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
- 批准号:
8842141 - 财政年份:2014
- 资助金额:
$ 41.88万 - 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
- 批准号:
9220838 - 财政年份:2014
- 资助金额:
$ 41.88万 - 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
- 批准号:
8672892 - 财政年份:2014
- 资助金额:
$ 41.88万 - 项目类别:
MECHANICS OF KINESIN--A MICROTUBULE BASED MOTOR PROTEIN
驱动蛋白的机制——一种基于微管的运动蛋白
- 批准号:
2080145 - 财政年份:1990
- 资助金额:
$ 41.88万 - 项目类别:
Mechanics of Kinesin: a Microtubule-Based Motor Protein
驱动蛋白的力学:一种基于微管的运动蛋白
- 批准号:
6874904 - 财政年份:1990
- 资助金额:
$ 41.88万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
- 批准号:
2419915 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Modelling drug binding to biological ion channels
模拟药物与生物离子通道的结合
- 批准号:
2747257 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Studentship
Elucidation of biological functions of the NCBP3 RNA-binding protein using a novel mutant mouse strain
使用新型突变小鼠品系阐明 NCBP3 RNA 结合蛋白的生物学功能
- 批准号:
22K06065 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identifying binding partners, biological substrates and antisense oligonucleotides regulating expression of short and long ACE2.
识别调节短和长 ACE2 表达的结合伴侣、生物底物和反义寡核苷酸。
- 批准号:
BB/V019848/1 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Research Grant
Structure and function of pufferfish toxin, tetrodotoxin, binding proteins as biological defense agent
河豚毒素、河豚毒素、结合蛋白作为生物防御剂的结构和功能
- 批准号:
19K06241 - 财政年份:2019
- 资助金额:
$ 41.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The molecular and biological roles of growth inhibiting chromatin binding proteins
生长抑制染色质结合蛋白的分子和生物学作用
- 批准号:
nhmrc : GNT1143612 - 财政年份:2018
- 资助金额:
$ 41.88万 - 项目类别:
Project Grants
Investigating a biological specificity conundrum: the role of dynamics in transcription factor binding
研究生物特异性难题:动力学在转录因子结合中的作用
- 批准号:
406750 - 财政年份:2018
- 资助金额:
$ 41.88万 - 项目类别:
Studentship Programs
Electrical Detection of Small Molecule Binding to Biological Receptors using Organic Thin Film Transistors : A new approach for label free assays
使用有机薄膜晶体管对小分子与生物受体结合的电检测:一种无标记测定的新方法
- 批准号:
133593 - 财政年份:2018
- 资助金额:
$ 41.88万 - 项目类别:
Feasibility Studies
Biological effect and preventive method for human serum albumin binding to transboundary air borne PM2.5.
人血清白蛋白与跨境空气PM2.5结合的生物学效应及预防方法。
- 批准号:
18H03039 - 财政年份:2018
- 资助金额:
$ 41.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The molecular and biological roles of growth inhibiting chromatin binding proteins
生长抑制染色质结合蛋白的分子和生物学作用
- 批准号:
nhmrc : 1143612 - 财政年份:2018
- 资助金额:
$ 41.88万 - 项目类别:
Project Grants