Cell Biological Limitations Constrain Dendritic Branching Morphology and Neuronal Function
细胞生物学限制限制了树突分支形态和神经元功能
基本信息
- 批准号:9146993
- 负责人:
- 金额:$ 83.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-21 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureBehaviorBiologicalBiological Neural NetworksCalciumCaliberCellsCellular biologyCharacteristicsConflict (Psychology)Costs and BenefitsDendritesDevelopmentDrosophila genusElectron MicroscopyGoalsLaboratoriesLarvaLengthMapsMeasurementMeasuresMechanoreceptorsMorphologyNatureNervous system structureNeuronsNeurophysiology - biologic functionNeurosciencesOrganellesOutputProcessProteinsResearchSignal TransductionStructureSynapsesSystemTestingTheoretical modelflygenetic manipulationinformation processinginsightlight microscopymeetingsmutantresearch studysensory inputsignal processingtheoriesvoltage
项目摘要
DESCRIPTION (provided by applicant): The general problem that I will address is how neurons integrate their inputs and compute their outputs. Central to integration and computation is the morphology of neurons, and in particular that of their highly branched dendritic arbors, which receive synaptic input from other neurons or sensory input from the outside world. The connections between axonal and dendritic processes define the nervous system's structure, which is viewed as a prerequisite for understanding neural function; connectomics, the global study of neuronal connectivity, has emerged as a major goal of neuroscience. In this Pioneer proposal, I want to take an orthogonal approach to neuronal morphology. My hypothesis is that the cell biology of the neuron-the transport and turnover of materials-places very strong constraints on both building and maintaining dendrites. Furthermore, I propose that these constraints are so strong that they actually compromise the functioning of neurons: I hypothesize, for example, that the changes in diameters of dendritic processes across branch junctions are dictated by transport constraints and that they actually degrade signal propagation. If this is true, then morphology is a compromise between cell biology and neuronal function, and determining the nature of the tradeoff is likely to provide key insight into connectivity. The morphological rules that I will uncover will provide powerful a prioris for determining connectivit maps, and may help to solve a major problem in connectomics: how well does the connectivity map need to be in order to understand the function?
To test this hypothesis, one needs a system in which morphology can be measured precisely (and in the most
general sense, which includes protein localization), where it can be manipulated in a controlled way, and where
morphology can be correlated with function. The Class IV dendritic arborization mechanoreceptor of Drosophila larvae
meets these requirements, and will be the initial focus of study. The experimental goals are: (i) to use light and electron
microscopy to discover the full set of branching rules—that is, how diameters, angles, branch lengths, and protein &
organelle distributions change over branch points. And: (ii) to use calcium and voltage recordings, together with behavior,
to characterize the function of the neuron. The measurements will be done in wild-type flies and in mutants, in which the
morphology has been modified using precise genetic manipulations. The theoretical goal is to determine the extent to
which the observed anatomical and functional characteristics optimize transport and developmental constraints on the one
hand, and signal processing constraints on the other hand. The theory will be done in close coordination with experiments
performed in the same laboratory.
The nature of the tradeoff between these conflicting costs and benefits will provide tremendous insight into
neuronal architecture. This research, via the combination of precise experimental measurement and theoretical modeling,
will add inestimably to our understanding of the relationship between form and function in the nervous system. We hope
that principles will be found that apply broadly across nervous systems and that the principles will have practical value in
the determination of the structure of neural networks.
描述(由申请人提供):我要解决的一般问题是神经元如何整合其输入并计算其输出。集成和计算的核心是神经元的形态,特别是其高度分支的树突乔木的形态,它们接收来自其他神经元的突触输入或来自外界的感觉输入。轴突和树突过程之间的联系定义了神经系统的结构,这被视为理解神经功能的先决条件;连接组学是神经元连接的全球研究,已成为神经科学的一个主要目标。 在这个先锋提案中,我想对神经元形态采取正交方法。我的假设是,神经元的细胞生物学——物质的运输和周转——对树突的构建和维持施加了非常强的限制。此外,我认为这些约束如此强大,以至于它们实际上损害了神经元的功能:例如,我假设跨分支连接的树突直径的变化是由传输约束决定的,并且它们实际上会降低信号传播。如果这是真的,那么形态学是细胞生物学和神经元功能之间的折衷方案,确定这种折衷方案的性质可能会提供对连通性的关键见解。我将揭示的形态学规则将为确定连接图提供强大的先验,并可能有助于解决连接组学中的一个主要问题:为了理解功能,连接图需要有多好?
为了检验这一假设,我们需要一个可以精确测量形态的系统(并且在大多数情况下)
一般意义上,包括蛋白质定位),它可以在哪里以受控方式进行操纵,以及在哪里
形态可以与功能相关。果蝇幼虫的 IV 类树突状机械感受器
满足这些要求,将是最初的研究重点。实验目标是:(i)利用光和电子
显微镜发现全套分支规则,即直径、角度、分支长度和蛋白质如何与
细胞器分布随分支点而变化。并且:(ii) 使用钙和电压记录以及行为,
来表征神经元的功能。测量将在野生型果蝇和突变体中进行,其中
形态学已通过精确的基因操作进行了修改。理论目标是确定
观察到的解剖和功能特征优化了对一个人的运输和发育限制
一方面,以及信号处理的限制。该理论将与实验密切配合进行
在同一实验室进行。
这些相互冲突的成本和收益之间的权衡本质将为我们提供深刻的见解
神经元结构。这项研究通过精确的实验测量和理论建模相结合,
将极大地增进我们对神经系统形式与功能之间关系的理解。我们希望
将发现这些原则广泛适用于神经系统,并且这些原则将在以下方面具有实际价值:
神经网络结构的确定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathon Howard其他文献
Jonathon Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathon Howard', 18)}}的其他基金
Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
树突结构:数据驱动模型连接分子和形态学
- 批准号:
10308521 - 财政年份:2020
- 资助金额:
$ 83.25万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10441383 - 财政年份:2020
- 资助金额:
$ 83.25万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10643705 - 财政年份:2020
- 资助金额:
$ 83.25万 - 项目类别:
Dendrite structure: Data-Driven Models to Bridge from Molecules to Morphology
树突结构:数据驱动模型连接分子和形态学
- 批准号:
10533281 - 财政年份:2020
- 资助金额:
$ 83.25万 - 项目类别:
Microtubule Severing and Regrowth by Spastin
Spastin 微管切断和再生
- 批准号:
10221743 - 财政年份:2020
- 资助金额:
$ 83.25万 - 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
- 批准号:
8842141 - 财政年份:2014
- 资助金额:
$ 83.25万 - 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
- 批准号:
9220838 - 财政年份:2014
- 资助金额:
$ 83.25万 - 项目类别:
Control of microtubule length by polymerases and depolymerases
通过聚合酶和解聚酶控制微管长度
- 批准号:
8672892 - 财政年份:2014
- 资助金额:
$ 83.25万 - 项目类别:
MECHANICS OF KINESIN--A MICROTUBULE BASED MOTOR PROTEIN
驱动蛋白的机制——一种基于微管的运动蛋白
- 批准号:
2080145 - 财政年份:1990
- 资助金额:
$ 83.25万 - 项目类别:
Mechanics of Kinesin: a Microtubule-Based Motor Protein
驱动蛋白的力学:一种基于微管的运动蛋白
- 批准号:
6874904 - 财政年份:1990
- 资助金额:
$ 83.25万 - 项目类别:
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
- 批准号:
2316666 - 财政年份:2023
- 资助金额:
$ 83.25万 - 项目类别:
Fellowship Award
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 83.25万 - 项目类别:
Standard Grant
Architecture, dynamics and cell-specific behavior of tau condensates
tau 凝聚物的结构、动力学和细胞特异性行为
- 批准号:
10662730 - 财政年份:2023
- 资助金额:
$ 83.25万 - 项目类别:
NSF-BSF: Natural selection on the social interactions that mediate collective behavior: ecological pressures and genomic architecture
NSF-BSF:介导集体行为的社会互动的自然选择:生态压力和基因组结构
- 批准号:
1940647 - 财政年份:2020
- 资助金额:
$ 83.25万 - 项目类别:
Continuing Grant
Description method and formal verification method with section behavior model based on software architecture
基于软件体系结构的分段行为模型描述方法和形式化验证方法
- 批准号:
19K11911 - 财政年份:2019
- 资助金额:
$ 83.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Genetic Architecture and Proximate Mechanisms Underlying Indirect Genetic Effects on Cooperative Antipredator Behavior
职业:间接遗传效应对合作性反捕食者行为的遗传结构和直接机制
- 批准号:
1453536 - 财政年份:2015
- 资助金额:
$ 83.25万 - 项目类别:
Continuing Grant
Investigation of the influence of architecture and doping of diamond like carbon coatings on the damage behavior under cyclic mechanical stress
研究类金刚石碳涂层的结构和掺杂对循环机械应力下损伤行为的影响
- 批准号:
279491470 - 财政年份:2015
- 资助金额:
$ 83.25万 - 项目类别:
Research Grants














{{item.name}}会员




