Prosthesis Control by Forward Dynamic Simulation of the Intact Biomedical system

通过完整生物医学系统的正向动态仿真进行假肢控制

基本信息

项目摘要

DESCRIPTION (provided by applicant): Persons with recent hand amputations expect modern hand prostheses to function like intact hands. Current state-of-the-art electric prosthetic hands are generally single degree-of-freedom (opening and closing) devices that are controlled using only two muscle signals. As a result, most state-of-the-art devices fail to meet user's expectations and are under-utilized or rejected. Because of this, advances in mechanical hardware are directed toward providing functionality comparable to the intact human hand. Despite such advances, the performance of sophisticated hand prostheses remains limited by the ability to control them via physiological (e.g., electromyographic) signals sensed from the user. In general, prosthetic devices that support multiple degree-of-freedom movements for any limb require sequential control, implementing locking mechanisms or special switch signals to change from one degree-of-freedom to another. There is a large, unmet need for control algorithms that allow simultaneous control of multiple degrees-of-freedom and are not difficult for the user to learn. In this study, we will implement a biomechanical modeling approach to develop a control algorithm that predicts the hand and wrist motions that would occur in an intact hand given the electromyographic (EMG) signals measured from the residual muscles of an amputee's forearm. The objectives for this proposal are to first characterize the function of the hand muscles in creating complex hand motions in the intact hand and to then develop the controller. To accomplish these objectives, extrinsic muscle activity and joint kinematics will be quantified as individuals produce a subset of postures from the manual alphabet of American Sign Language (ASL), and perform two prehensile tasks. Recorded muscle activity will define the control signals available from the extrinsic muscles during complex motions, and will become input for biomechanical simulations, which will be used to identify how effectively postures can be achieved without the contributions from the intrinsic muscles of the hand (the subset of muscles lost to amputation). Results will direct the mechanical design of prosthetic hands to effectively compensate for the mechanical actions of the missing intrinsic muscles. Ultimately, a prosthetic hand is intended to be used to manipulate objects. Thus, we will implement recent developments in variational integration theory to develop real-time simulations that incorporate endpoint forces, such as those found when the fingertips are in contact with an object, and other constraints required to simulate the hand interacting with external objects. Upon completion of the simulation work, a controller that drives the artificial hand based on user-generated muscle signals will be developed and implemented. Accomplishing the goals of this project will address a critical barrier to clinical implementation and user acceptance of multi-function prosthetic hands. PUBLIC HEALTH RELEVANCE: At its core, this project aims to deliver a real-time simulator of complex, multi-degree of freedom human hand motions, and link it to the hardware necessary to control state-of-the-art multi-function artificial hands. Such a system will enable the evaluation of many different approaches to the control of hand prostheses, facilitate the study of motor control of hand movement, and will have applications to rehabilitation of hand function in many populations, such as spinal cord injury and stroke.
描述(由申请人提供):近期手部截肢的人希望现代手部假体能够像完整的手一样发挥功能。目前最先进的电动假手通常是单自由度(打开和闭合)的装置,其仅使用两个肌肉信号来控制。因此,大多数最先进的设备无法满足用户的期望,并且未得到充分利用或被拒绝。因此,机械硬件的进步旨在提供与完整人手相当的功能。尽管取得了这些进步,复杂假手的性能仍然受到通过生理控制它们的能力的限制(例如,肌电图)信号。通常,支持任何肢体的多个自由度运动的假肢装置需要顺序控制,实现锁定机构或特殊开关信号以从一个自由度改变到另一个自由度。对于允许同时控制多个自由度并且用户不难学习的控制算法存在大量未满足的需求。在这项研究中,我们将实现一个生物力学建模方法来开发一个控制算法,预测的手和手腕的动作,将发生在一个完整的手,给定的肌电图(EMG)信号测量从截肢者的前臂的残余肌肉。该建议的目标是首先描述手部肌肉在完整手部中创建复杂手部运动的功能,然后开发控制器。为了实现这些目标,外在的肌肉活动和关节运动学将被量化为个人产生的姿势从美国手语(ASL)的手动字母表的子集,并执行两个模拟任务。记录的肌肉活动将定义在复杂运动期间可从外在肌肉获得的控制信号,并将成为生物力学模拟的输入,这将用于确定在没有手的内在肌肉(截肢失去的肌肉子集)的贡献的情况下如何有效地实现姿势。结果将指导假手的机械设计,以有效地补偿缺失的内在肌肉的机械动作。最终,假肢手旨在用于操纵物体。因此,我们将实施变分积分理论的最新发展,以开发实时模拟,将端点的力量,如那些发现时,指尖与物体接触,以及其他约束条件所需的模拟手与外部物体的相互作用。在完成模拟工作后,将开发和实现一个控制器,该控制器根据用户生成的肌肉信号驱动假手。完成本项目的目标将解决临床实施和用户接受多功能假手的关键障碍。 公共卫生关系:该项目的核心是提供一个复杂的、多自由度的人手运动的实时模拟器,并将其与控制最先进的多功能假手所需的硬件连接起来。这样的系统将使许多不同的方法来控制的手假体的评价,促进手部运动的电机控制的研究,并将在许多人群,如脊髓损伤和中风的手功能的康复应用。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trajectory Synthesis for Fisher Information Maximization.
Real-time simulation of hand motion for prosthesis control.
Across-subject calibration of an instrumented glove to measure hand movement for clinical purposes.
跨受试者的校准仪器手套,以测量手动移动的临床目的。
Local E-optimality Conditions for Trajectory Design to Estimate Parameters in Nonlinear Systems.
轨迹设计的局部电子优先条件,以估计非线性系统中的参数。
Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wendy M Murray其他文献

Wendy M Murray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wendy M Murray', 18)}}的其他基金

Automatic MRI segmentation for upper limb muscles for clinical applications
上肢肌肉自动 MRI 分割的临床应用
  • 批准号:
    10433688
  • 财政年份:
    2022
  • 资助金额:
    $ 37.95万
  • 项目类别:
Automatic MRI segmentation for upper limb muscles for clinical applications
上肢肌肉自动 MRI 分割的临床应用
  • 批准号:
    10693854
  • 财政年份:
    2022
  • 资助金额:
    $ 37.95万
  • 项目类别:
Development of Ultrasound Imaging Phantoms Appropriate for Quantification of Muscle Fascicle Architecture and Mechanical Properties
开发适合量化肌肉束结构和机械性能的超声成像模型
  • 批准号:
    10252224
  • 财政年份:
    2021
  • 资助金额:
    $ 37.95万
  • 项目类别:
Development of Ultrasound Imaging Phantoms Appropriate for Quantification of Muscle Fascicle Architecture and Mechanical Properties
开发适合量化肌肉束结构和机械性能的超声成像模型
  • 批准号:
    10427254
  • 财政年份:
    2021
  • 资助金额:
    $ 37.95万
  • 项目类别:
How Do Wrist Surgical Salvage Procedures Limit Hand Strength?
手腕抢救手术如何限制手部力量?
  • 批准号:
    10336396
  • 财政年份:
    2016
  • 资助金额:
    $ 37.95万
  • 项目类别:
How Do Wrist Surgical Salvage Procedures Limit Hand Strength?
手腕抢救手术如何限制手部力量?
  • 批准号:
    10322969
  • 财政年份:
    2016
  • 资助金额:
    $ 37.95万
  • 项目类别:
How Do Wrist Surgical Salvage Procedures Limit Hand Strength?
手腕抢救手术如何限制手部力量?
  • 批准号:
    9312123
  • 财政年份:
    2016
  • 资助金额:
    $ 37.95万
  • 项目类别:
Prosthesis Control by Forward Dynamic Simulation of the Intact Biomedical system
通过完整生物医学系统的正向动态仿真进行假肢控制
  • 批准号:
    8252162
  • 财政年份:
    2011
  • 资助金额:
    $ 37.95万
  • 项目类别:
Prosthesis Control by Forward Dynamic Simulation of the Intact Biomedical system
通过完整生物医学系统的正向动态仿真进行假肢控制
  • 批准号:
    8108654
  • 财政年份:
    2011
  • 资助金额:
    $ 37.95万
  • 项目类别:
Prosthesis Control by Forward Dynamic Simulation of the Intact Biomedical system
通过完整生物医学系统的正向动态仿真进行假肢控制
  • 批准号:
    8454556
  • 财政年份:
    2011
  • 资助金额:
    $ 37.95万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 37.95万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 37.95万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 37.95万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 37.95万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 37.95万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 37.95万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 37.95万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 37.95万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 37.95万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.95万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了