Development of Ultrasound Imaging Phantoms Appropriate for Quantification of Muscle Fascicle Architecture and Mechanical Properties

开发适合量化肌肉束结构和机械性能的超声成像模型

基本信息

  • 批准号:
    10252224
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Because of its low cost and ease of use, there is widespread adoption of ultrasound as an imaging modality for the musculoskeletal system. For example, traditional, two-dimensional, brightness mode (B-mode) ultrasound is currently being implemented to quantify muscle morphological adaptations in vivo for a broad and disparate range of applications. Ultrasound elastography, a newer modality, is increasingly being applied to the quantification of human muscle tissue mechanical properties. Clinically, musculoskeletal ultrasound has been promoted as a “first-line imaging modality” for 72 clinical indications. Despite the increasing prevalence of musculoskeletal ultrasound, there remain critical limitations for its implementation and for interpretation of the data that results. Clinically, reliability and standardization of training are considered significant obstacles limiting the quality of clinical ultrasound assessments. Similarly, there is a critical, unmet need to improve validation methods for the research application of ultrasound imaging. For example, a systematic review of the literature describing the implementation of B-mode ultrasound for measurement of muscle morphometric parameters concludes that, while the evidence supports its validity, the evidence is extremely limited and there are substantial caveats on this conclusion. There are similar limitations relevant to the study of muscle mechanical properties via ultrasound imaging. We propose the development of muscle-like phantoms as a first step toward addressing common issues of reliability, validation, and standardization of training for ultrasound imaging, that connect research and the clinic. In medical imaging, phantoms are mockups of the tissue of interest, synthesized to mimic critical features, known geometric organization, or relevant material composition; they are commonly implemented to establish a type of “gold-standard” performance measure. There are no commercially available phantoms that are applicable to establish how accurately and reliably either muscle structure or mechanical properties can be quantified via ultrasound. As a result, the true utility of these widely adopted imaging methods is not being achieved. This application describes a preclinical study, focused on prototype device development. The long-term goal for this work is to develop a range of muscle-like phantoms that will enable the study of different muscle architectures and include physiologically relevant material properties. In this two-year SPiRE funding period, we will (1) develop materials that mimic the mechanical properties of human muscle and are suitable for ultrasound imaging, and (2) use these materials to 3D print muscle-like phantoms. We will evaluate the phantoms we produce relative to how well they replicate structural and material properties of muscles commonly assessed with ultrasound imaging. The first aim of this study is to develop printable hydrogels that mimic the passive and active mechanical properties of muscle. The deliverables of this aim include: (i) quantification of the range of Young’s moduli achievable via 3D printing of hydrogels using a novel third generation stereolithography method, (ii) demonstration that these materials are suitable for shear wave imaging, (iii) characterization of the maximum stresses the resulting materials can sustain, and (iv) identification of the formulations that best replicate the desired properties of skeletal muscle. The second aim will create phantoms that enable the study of muscle architecture and mechanics with ultrasound. Using the range of materials developed in Aim 1, we will print artificial muscles that replicate the range of sizes, shapes, and mechanical properties present in the adult human arm. Phantoms will be evaluated on the ability to distinguish individual fascicles using B-mode ultrasound imaging, to sustain loads comparable to human muscle, and to have load-dependent material properties spanning the range reported for muscle. Ultimately, the work proposed here will characterize the potential with which 3D printing can address the need for muscle-like imaging phantoms, setting the stage for both a future Merit Review in this area and an assessment of the viability of such a product for commercial translation.
由于其低成本和易用性,超声被广泛采用作为成像模态,用于 肌肉骨骼系统例如,传统的二维亮度模式(B模式)超声是 目前正在实施量化肌肉形态适应体内广泛和不同的 应用范围。超声弹性成像是一种较新的模式,正越来越多地应用于 量化人体肌肉组织的机械性能。临床上,肌肉骨骼超声已经 作为72种临床适应症的“一线成像模式”推广。尽管越来越流行的 肌肉骨骼超声,其实施和解释仍然存在严重的局限性, 结果的数据。临床上,训练的可靠性和标准化被认为是限制 临床超声评估的质量。同样,有一个关键的,未得到满足的需要,以改善验证 超声成像的研究应用方法。例如,对文献的系统回顾 描述了用于测量肌肉形态测量参数的B模式超声的实现 结论是,虽然证据支持其有效性,但证据极其有限, 对这一结论的实质性解释。肌肉力学的研究也有类似的局限性, 通过超声波成像的特性。 我们建议开发肌肉状幻影作为解决共同问题的第一步 超声成像培训的可靠性,验证和标准化,将研究和 诊所在医学成像中,体模是感兴趣的组织的实体模型,合成以模仿关键特征, 已知的几何组织或相关的材料组成;它们通常用于建立 这是一种“黄金标准”的业绩衡量标准。没有适用的市售体模 为了确定肌肉结构或机械特性可以通过以下方式量化的准确性和可靠性, 超声.因此,这些广泛采用的成像方法的真正效用没有实现。 本申请描述了一项临床前研究,重点是原型器械开发。长期 这项工作的目标是开发一系列类似肌肉的模型,以便研究不同的肌肉 结构,并包括生理相关的材料特性。在这两年的SPiRE资助期间,我们 将(1)开发模拟人体肌肉机械特性并适用于超声波的材料 成像,以及(2)使用这些材料3D打印肌肉样幻影。我们将评估幻影, 生产相对于他们如何复制肌肉的结构和材料特性,通常评估 超声波成像。本研究的第一个目的是开发可打印的水凝胶,其模拟被动和 肌肉的主动机械特性。这一目标的交付成果包括: 使用新型第三代立体光刻方法通过3D打印水凝胶可实现杨氏模量, (ii)证明这些材料适用于剪切波成像,(iii)表征最大的 强调所得到的材料可以维持,和(iv)确定配方,最好地复制 骨骼肌的理想特性。第二个目标是创造一种能够研究肌肉的幻象 建筑和机械与超声波。使用目标1中开发的材料范围,我们将打印 人造肌肉,其复制成年人存在的尺寸、形状和机械特性的范围 手臂将使用B型超声对患者区分单个神经束的能力进行评价 成像,以维持与人类肌肉相当的负荷,并具有依赖于负荷的材料特性 涵盖了报告的肌肉范围。最后,这里提出的工作将表征的潜力, 其中3D打印可以解决对肌肉样成像幻影的需求,为未来 这一领域的优点审查和对这种产品用于商业翻译的可行性的评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wendy M Murray其他文献

Wendy M Murray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wendy M Murray', 18)}}的其他基金

Automatic MRI segmentation for upper limb muscles for clinical applications
上肢肌肉自动 MRI 分割的临床应用
  • 批准号:
    10433688
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Automatic MRI segmentation for upper limb muscles for clinical applications
上肢肌肉自动 MRI 分割的临床应用
  • 批准号:
    10693854
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of Ultrasound Imaging Phantoms Appropriate for Quantification of Muscle Fascicle Architecture and Mechanical Properties
开发适合量化肌肉束结构和机械性能的超声成像模型
  • 批准号:
    10427254
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
How Do Wrist Surgical Salvage Procedures Limit Hand Strength?
手腕抢救手术如何限制手部力量?
  • 批准号:
    10336396
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
How Do Wrist Surgical Salvage Procedures Limit Hand Strength?
手腕抢救手术如何限制手部力量?
  • 批准号:
    10322969
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
How Do Wrist Surgical Salvage Procedures Limit Hand Strength?
手腕抢救手术如何限制手部力量?
  • 批准号:
    9312123
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Prosthesis Control by Forward Dynamic Simulation of the Intact Biomedical system
通过完整生物医学系统的正向动态仿真进行假肢控制
  • 批准号:
    8252162
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Prosthesis Control by Forward Dynamic Simulation of the Intact Biomedical system
通过完整生物医学系统的正向动态仿真进行假肢控制
  • 批准号:
    8645627
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Prosthesis Control by Forward Dynamic Simulation of the Intact Biomedical system
通过完整生物医学系统的正向动态仿真进行假肢控制
  • 批准号:
    8108654
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Prosthesis Control by Forward Dynamic Simulation of the Intact Biomedical system
通过完整生物医学系统的正向动态仿真进行假肢控制
  • 批准号:
    8454556
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
  • 批准号:
    24K11201
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
  • 批准号:
    24K11281
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
  • 批准号:
    EP/Z001145/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334777
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334775
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
  • 批准号:
    515081333
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
  • 批准号:
    2320040
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了