Neural Interface and Control Design to Restore Sensation in Amputees

用于恢复截肢者感觉的神经接口和控制设计

基本信息

项目摘要

DESCRIPTION Rationale: The standard upper extremity prosthesis has been a cable-based system in which cables attached to the prosthesis wrap around the back to the contralateral shoulder. By manipulating the contralateral shoulder, the user controls the function of the prosthesis, such as gripping or releasing an object, as well as the force that is applied by the prosthesis. While not natural, the user does receive a form of sensory feedback from the amount of tension developed in the cables. In more recent years, myoelectric prostheses have become available. These newer prostheses rely on voluntary contraction of the residual muscles of the amputated limb to control the function of the prosthesis. While myoelectric prostheses are more cosmetically pleasing and provide a greater range of motion than the traditional cable-based system, they lack sensory feedback. Because the hands are key for manipulating the external environment, sensory feedback is critical in the upper extremities. The ideal artificial sensory feedback mechanism would be one that produces the exact same perception as the non-amputated limb. Although the sensory receptors are missing in the amputated limb, the neural pathways that once carried sensory information remain intact and can be excited with electrical stimulation, thus affording an opportunity for providing sensory feedback to the amputee. Objective: The objective of this study is to prove that electrical stimulation applied to the residal nerves in an amputee in a controlled manner can provide sensory feedback that can be modulated and is reproducible. Further, this study aims to demonstrate that the sensations induced by electrical stimulation are stable over time and that their locations can be artificially manipulated without altering stimulus parameters. Numerous hypotheses will be tested through a series of experiments that span a 10 week time period. Research Plan and Methodology: Five subjects will be implanted with nerve cuff electrodes around residual nerves in their arm: the median, radial, ulnar, and musculocutaenous nerves. Stimulus space will be searched in a gross, rapid manner over the first four weeks of the study. The most promising stimulus parameters and the space surrounding them will be tested in more detail during the next 6 weeks. Subjects will be queried for their perceptions to stimulation and how those perceptions change with time or with changes in stimulus parameters. Sensations that the limb has changed position will be studied by having the subject mirror the position with the contralateral, intact limb. Limb positions will be recorded with a Vicon system. In addition to creating a stimulus-to-percept map, which may vary over time, a percept will be singled out for the purpose of artificial relocation. This will be accomplished by stimulating the nerve and inducing a percept that is in disagreement with what the subject sees. Specifically, pressure will be applied to the fingertip of the subject's prosthesis at the same time that the subject's nerve is stimulated with a set of stimulus parameters known to induce a sensation somewhere else. The visual feedback should allow the subject to "adjust" the location of the perception to the fingertip. Successful relocatio of a sensation may allow a perfect mapping from where a clinician wants a stimulus to be perceived and where the subject actually perceives it. In addition to the data gathered during the study, which will lead to two manuscripts, a software package will exist that allows fast, efficien, and meaningful stimulus optimization at the conclusion of the study. This software will be useful in future studies that incorporate additional stimulus channels or locations. The data obtained in this study will guide a future phase in which a prosthesis is designed to control sensory feedback and the subject's ability to perform tasks of daily living with the sensory feedback is evaluated.
描述

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATTHEW Anthony SCHIEFER其他文献

MATTHEW Anthony SCHIEFER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATTHEW Anthony SCHIEFER', 18)}}的其他基金

Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
  • 批准号:
    10702126
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developing a novel stimulus paradigm and interface of vagal nerve stimulation (VNS) to treat obesity
开发一种新的刺激范式和迷走神经刺激(VNS)界面来治疗肥胖
  • 批准号:
    10597120
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Developing a novel stimulus paradigm and interface of vagal nerve stimulation (VNS) to treat obesity
开发一种新的刺激范式和迷走神经刺激(VNS)界面来治疗肥胖
  • 批准号:
    10425537
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Toward Closed-Loop Control of Homeostatic Blood Pressure Following Spinal Cord Injury
脊髓损伤后稳态血压的闭环控制
  • 批准号:
    10311117
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Design and Application of Custom Waveforms to Restore and Control Satiety
恢复和控制饱腹感的定制波形的设计和应用
  • 批准号:
    10390275
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Design and Application of Custom Waveforms to Restore and Control Satiety
恢复和控制饱腹感的定制波形的设计和应用
  • 批准号:
    9795377
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Design and Application of Custom Waveforms to Restore and Control Satiety
恢复和控制饱腹感的定制波形的设计和应用
  • 批准号:
    10011592
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Neural Interface and Control Design to Restore Sensation in Amputees
用于恢复截肢者感觉的神经接口和控制设计
  • 批准号:
    8278363
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:

相似海外基金

A patient-oriented research approach to studying sex differences in the prosthetic needs and priorities of lower limb amputees
以患者为导向的研究方法,用于研究下肢截肢者的假肢需求和优先事项的性别差异
  • 批准号:
    485115
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Developing a gene therapy product to treat pressure ulcers in lower-limb amputees
开发一种基因治疗产品来治疗下肢截肢者的压力性溃疡
  • 批准号:
    2888189
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
IMPILO-AI: Intelligent Monitoring of Prosthesis conditions In LOwer limb amputees - Advancing Innovation
IMPILO-AI:智能监测下肢截肢者的假肢状况 - 推进创新
  • 批准号:
    10082684
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Development and Evaluation of a Wearable Biofeedback Gait Training System for Lower Limb Amputees
下肢截肢者可穿戴生物反馈步态训练系统的开发和评估
  • 批准号:
    568803-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Engineering design optimization of a lower limb prosthesis for female single-limb transtibial amputees using a computational modelling and user-centered design approach.
使用计算建模和以用户为中心的设计方法对女性单肢跨胫截肢者的下肢假肢进行工程设计优化。
  • 批准号:
    569642-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Improving the health status of dysvascular amputees by deploying digital prosthetic interface technology in combination with exercise intervention
通过部署数字假肢接口技术结合运动干预来改善血管障碍性截肢者的健康状况
  • 批准号:
    10707261
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Improving the health status of dysvascular amputees by deploying digital prosthetic interface technology in combination with exercise intervention
通过部署数字假肢接口技术结合运动干预来改善血管障碍性截肢者的健康状况
  • 批准号:
    10547407
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A Low-Cost, Practical Fitness Monitor of Socket-Suspension Systems for Lower Limb Amputees
适用于下肢截肢者的低成本、实用的插座悬挂系统健康监测仪
  • 批准号:
    10384774
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Restoring Proprioception to Improve Balance and Gait in Lower-Limb Amputees - COVID-19 Supplement
恢复本体感觉以改善下肢截肢者的平衡和步态 - COVID-19 补充资料
  • 批准号:
    10619249
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Minimising bone mineral density loss in traumatic amputees: a randomised controlled feasibility trial
最大限度地减少创伤性截肢者的骨矿物质密度损失:一项随机对照可行性试验
  • 批准号:
    EP/X027155/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了