Guided Tissue Engineering of 3D Vascularized Tissues
3D 血管化组织的引导组织工程
基本信息
- 批准号:8634262
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsAreaAutologousBiocompatible MaterialsBiologicalBlast InjuriesBlood VesselsClinicClinicalComplexConflict (Psychology)DefectDevelopmentDevicesEngineeringEthylene GlycolsEvaluationFreedomGenerationsGoalsGrantGrowth FactorHead and neck structureHistocompatibility TestingHydrogelsImaging TechniquesIn VitroIncidenceInstitutesInvestigationLeadLifeMedicineMethodsModelingMovementOperative Surgical ProceduresOsteogenesisPatientsPeriosteumPolymersPopulationPre-Clinical ModelProceduresResearchShapesSolutionsSourceStagingStructureSurgeonSystemTechniquesTissue EngineeringTissuesTranslatingTranslationsTraumaVascular blood supplyVascularizationVeteransWorld War IIarmbasebonebone engineeringbone geometryclinical applicationcraniofacialcraniofacial complexdesignengineering designethylene glycolhead/neck injuryimplantationimprovedin vivomeetingsoperationporous hydrogelpublic health relevancereconstructionregenerativeresponsescaffoldskeletalsuccess
项目摘要
The successful translation of tissue engineering therapies into clinical application that will benefit
veterans requires overcoming a number of technical, biological and surgical challenges. The volume of tissue
that can be engineered is limited by the extent to which stable blood vessels can be stimulated to form. An
extensive, stable blood supply is required to meet mass transport demands in the new tissues and most
methods are optimized for engineering tissues in small volume pre-clinical models. We have shown that
implantation of a chamber containing model tissue engineering therapies against the periosteum can lead to
the generation of three-dimensional vascularized bone of clinically appropriate shape and volume.4 This
technique has been translated into clinical application but required an autologous source of bone for the
chamber components. Broad application of this approach requires the identification of alternative, non-
autologous tissue sources. Tissue engineering has the potential to provide alternative sources for chamber
components.
In our previous MERIT grant we investigated and optimized the design of porous hydrogel scaffolds for
vascularized tissue formation. In the previous cycle we developed techniques for polymer synthesis and
design, evaluated vascularization and cellular response to these biomaterial scaffolds in vitro, in vivo, and in
silico, and investigated new imaging techniques for the evaluation of tissue engineering strategies. These
studies illustrate our ability to promote and influence vascular ingrowth into engineered tissues. Challenges
remain in regards to achieving vascular ingrowth sufficient for engineering large volumes of bone, coordinating
vascularization and bone formation and engineering complex structures suitable for clinical application. The
broad goals of this proposal are to 1) investigate and optimize the design of biosignal-embedded poly(ethylene
glycol)-based hydrogels for engineering vascularized bone and 2) apply these materials for engineering
vascularized bone for reconstruction of large, complex craniofacial defects. In order to achieve our goals we
will complete the following specific aims:
Objective 1: Investigate and optimize the generation of gradients scaffolds for stimulating vascularized tissue
invasion into porous hydrogels.
Objective 2: Investigate porous hydrogel systems for coordination of vascularization and bone formation in
porous hydrogels in vitro and in vivo.
Objective 3: Develop topological optimization methods for applying the clinically-translatable large animal
model to engineer vascularized bone of appropriate volume and structure for clinical application.
This is an ambitious proposal focused on the optimization of techniques that will bring new
reconstructive techniques closer to the clinic.
组织工程疗法的成功转化为临床应用,
退伍军人需要克服一些技术、生物和外科挑战。的组织的体积
但这受限于稳定血管的刺激形成程度。一个
需要广泛、稳定的血液供应来满足新组织中的大量运输需求,
优化方法以在小体积临床前模型中工程化组织。我们已经证明
将包含模型组织工程疗法的腔室植入骨膜可导致
生成具有临床适当形状和体积的三维血管化骨。4这
该技术已被转化为临床应用,但需要自体骨源,
腔室组件。要广泛采用这一办法,就需要确定替代性的、非-
自体组织来源。组织工程有可能提供替代来源的室
件.
在我们之前的MERIT资助中,我们研究并优化了多孔水凝胶支架的设计,
血管化组织形成。在上一个周期中,我们开发了聚合物合成技术,
设计,评价血管化和细胞反应,这些生物材料支架在体外,体内,
silico,并研究了新的成像技术,用于评估组织工程策略。这些
研究表明我们有能力促进和影响血管长入工程组织。挑战
在实现血管向内生长方面,仍然足以制造大量骨,
血管化和骨形成以及工程化适合于临床应用的复杂结构。的
本研究的主要目标是:1)研究和优化生物信号包埋聚乙烯的设计
乙二醇)基水凝胶用于工程化血管化骨和2)将这些材料应用于工程化
血管化骨重建大型复杂颅面缺损。为了实现我们的目标,我们
将完成以下具体目标:
目的1:研究和优化梯度支架的制备,以刺激血管化组织
侵入多孔水凝胶。
目的2:研究多孔水凝胶系统在血管化和骨形成中的协调作用。
多孔水凝胶的体外和体内研究。
目标3:为临床可平移大型动物的拓扑优化研究提供理论依据
模型,以工程血管化骨适当的体积和结构的临床应用。
这是一个雄心勃勃的建议,重点是优化技术,将带来新的
更接近诊所的重建技术
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC M BREY其他文献
ERIC M BREY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC M BREY', 18)}}的其他基金
Synthetic Matrices for Vascularization of Engineered Tissues
用于工程组织血管化的合成基质
- 批准号:
8195594 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Synthetic Matrices for Vascularization of Engineered Tissues
用于工程组织血管化的合成基质
- 批准号:
8155330 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Synthetic Matrices for Vascularization of Engineered Tissues
用于工程组织血管化的合成基质
- 批准号:
7931857 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Guided Tissue Engineering of 3D Vascularized Tissues
3D 血管化组织的引导组织工程
- 批准号:
8814103 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Guided Tissue Engineering of 3D Vascularized Tissues
3D 血管化组织的引导组织工程
- 批准号:
8974244 - 财政年份:2009
- 资助金额:
-- - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists