Synthetic Matrices for Vascularization of Engineered Tissues
用于工程组织血管化的合成基质
基本信息
- 批准号:8195594
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdsorptionAfghanistanAnimal ModelArchitectureAreaAutologousBiocompatible MaterialsBiologicalBioreactorsBlood VesselsCase StudyCell AdhesionCell physiologyCell-Matrix JunctionCellsChemicalsChemistryCleaved cellClinicalCoculture TechniquesComplexConflict (Psychology)DataDefectEndothelial CellsEngineeringEnvironmentEthylene GlycolsExcisionFibroblastsGelGenerationsGoalsGrowth FactorHistocompatibility TestingHydrogelsImmigrationImplantIn VitroIndividualInjuryIraqKineticsLeadLifeLigandsLiteratureMethodsModelingModificationMoldsOrganOsteogenesisPeriosteumPropertyProteinsProteolysisQuality of lifeRegenerative MedicineResearchResistanceScreening procedureShapesSkinSpeedSpinal CordStimulusStructureTechniquesTissue EngineeringTissuesTranslatingTraumaVascular blood supplyVascularizationVeteransbasebonebone engineeringbone morphogenetic protein 2cell motilitycell typeclinical applicationclinically relevantcraniofacialcrosslinkdensitydesignethylene glycolimplant materialimplantationimprovedin vivointerestmeetingsneovascularizationosteogenicporous hydrogelprotein aminoacid sequencepublic health relevancereconstructionscaffoldskeletalsuccesstumor
项目摘要
DESCRIPTION (provided by applicant):
Project Summary Physical injuries resulting from battlefield trauma present some of the greatest challenges for reconstruction. The best replacement for these wounds is uninjured autologous living tissue. Current clinical methods are effective for transferring this type of tissue. However, the methods are extremely limited by a lack of appropriate specialized tissue. Tissue engineering has shown promise for the reconstruction of complex physical injuries. The volume of tissue that can be engineered is limited by the extent to which stable blood vessels can be stimulated to form within the implanted material. The goals of this research are to optimize PEG hydrogel conditions to stimulate extensive and stable vessel formation in vivo and to use these hydrogels to increase the volume of vascularized bone that can be engineered for reconstruction of complex skeletal defects These goals are driven by the hypotheses that 1) the speed of endothelial cell migration and invasion is higher within macroporous hydrogels than hydrogels degraded only by cell proteolysis, 2) vessel stability is increased in materials that degrade and release growth factors after vessel invasion, and 3) increasing vascularization in chambers implanted against the periosteum will increase the volume and depth of osteogenesis. These hypotheses will be addressed by completing the following objectives: Specific Objective 1: Identify optimal PEG conditions that permit rapid cell and blood vessel invasion. Specific Objective 2: Identify the effects of material degradation and growth factor release kinetics on vessel persistence and maturation in implanted hydrogels. Specific Objective 3: Quantify the ability of hydrogels that stimulate rapid, stable neovascularization to promote vascularized bone formation in an animal model of guided tissue fabrication and determine whether addition of an osteogenic factor to the hydrogels further enhances bone formation. Completion of theses studies will lead to improved methods for engineering large volume tissues for the treatment of complex wounds resulting from battlefield trauma, civilian trauma, and tumor resection.
PUBLIC HEALTH RELEVANCE:
Project Narrative Relevance Physical injuries resulting from battlefield trauma present some of the greatest challenges for reconstruction. Tissue engineering has shown promise for the reconstruction of these complex wounds. The volume of tissue that can be engineered is limited by the extent to which stable blood vessels can be stimulated to form within the implanted material. The goal of this research is to design new biomaterials that stimulate blood vessel formation. These materials have the potential to improve the reconstruction and replacement of physical injuries suffered by veterans returning from current conflicts in Iraq and Afghanistan.
描述(由申请人提供):
项目概述战场创伤造成的身体伤害是重建工作面临的一些最大挑战。这些伤口的最佳替代物是未损伤的自体活体组织。目前的临床方法对于转移这种类型的组织是有效的。然而,由于缺乏合适的特殊组织,这些方法受到极大的限制。组织工程学在重建复杂的物理损伤方面显示出了良好的前景。可被工程化的组织的体积受到植入材料内刺激形成稳定血管的程度的限制。本研究的目标是优化聚乙二醇水凝胶的条件,以刺激体内广泛和稳定的血管形成,并使用这些水凝胶来增加可用于重建复杂骨骼缺损的血管化骨的体积。这些目标是由下述假设驱动的:1)内皮细胞在大孔水凝胶中的迁移和侵袭速度比仅通过细胞蛋白分解降解的水凝胶更快;2)血管稳定性在血管侵入后降解和释放生长因子的材料中增加,以及3)增加针对骨膜植入的腔室中的血管形成将增加成骨的体积和深度。这些假设将通过完成以下目标来解决:具体目标1:确定允许细胞和血管快速侵入的最佳聚乙二醇组分条件。特定目标2:确定材料降解和生长因子释放动力学对植入水凝胶中血管持久性和成熟度的影响。具体目标3:在引导组织构建的动物模型中,量化水凝胶刺激快速、稳定的新生血管促进血管化骨形成的能力,并确定在水凝胶中添加成骨因子是否进一步促进骨形成。这些研究的完成将带来大容量组织工程的改进方法,用于治疗战场创伤、平民创伤和肿瘤切除造成的复杂伤口。
公共卫生相关性:
项目叙述相关性战场创伤造成的身体伤害是重建工作面临的一些最大挑战。组织工程学在这些复杂伤口的重建方面显示出了希望。可被工程化的组织的体积受到植入材料内刺激形成稳定血管的程度的限制。这项研究的目标是设计新的生物材料来刺激血管形成。这些材料有可能改善伊拉克和阿富汗目前冲突归来的退伍军人遭受的身体伤害的重建和替换工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC M BREY其他文献
ERIC M BREY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC M BREY', 18)}}的其他基金
Synthetic Matrices for Vascularization of Engineered Tissues
用于工程组织血管化的合成基质
- 批准号:
8155330 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Synthetic Matrices for Vascularization of Engineered Tissues
用于工程组织血管化的合成基质
- 批准号:
7931857 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Guided Tissue Engineering of 3D Vascularized Tissues
3D 血管化组织的引导组织工程
- 批准号:
8814103 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Guided Tissue Engineering of 3D Vascularized Tissues
3D 血管化组织的引导组织工程
- 批准号:
8634262 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Guided Tissue Engineering of 3D Vascularized Tissues
3D 血管化组织的引导组织工程
- 批准号:
8974244 - 财政年份:2009
- 资助金额:
-- - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
-- - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
-- - 项目类别: