Guided Tissue Engineering of 3D Vascularized Tissues
3D 血管化组织的引导组织工程
基本信息
- 批准号:8814103
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsAreaAutologousBiocompatible MaterialsBiologicalBlast InjuriesBlood VesselsClinicClinicalComplexConflict (Psychology)Craniofacial AbnormalitiesDefectDevelopmentDevicesEngineeringEthylene GlycolsEvaluationFreedomGenerationsGoalsGrantGrowth FactorHead and neck structureHistocompatibility TestingHydrogelsImaging TechniquesIn VitroIncidenceInstitutesInvestigationLeadLifeMedicineMethodsModelingMovementOperative Surgical ProceduresOsteogenesisPatientsPeriosteumPolymersPopulationPre-Clinical ModelProceduresResearchShapesSolutionsSourceStagingStructureSurgeonSystemTechniquesTissue EngineeringTissuesTranslatingTranslationsTraumaVascular blood supplyVascularizationVeteransWorld War IIarmbasebonebone engineeringbone geometryclinical applicationcraniofacialdesignengineering designethylene glycolhead/neck injuryimplantationimprovedin vivomeetingsoperationporous hydrogelpublic health relevancereconstructionregenerativeresponsescaffoldskeletalsuccess
项目摘要
The successful translation of tissue engineering therapies into clinical application that will benefit
veterans requires overcoming a number of technical, biological and surgical challenges. The volume of tissue
that can be engineered is limited by the extent to which stable blood vessels can be stimulated to form. An
extensive, stable blood supply is required to meet mass transport demands in the new tissues and most
methods are optimized for engineering tissues in small volume pre-clinical models. We have shown that
implantation of a chamber containing model tissue engineering therapies against the periosteum can lead to
the generation of three-dimensional vascularized bone of clinically appropriate shape and volume.4 This
technique has been translated into clinical application but required an autologous source of bone for the
chamber components. Broad application of this approach requires the identification of alternative, non-
autologous tissue sources. Tissue engineering has the potential to provide alternative sources for chamber
components.
In our previous MERIT grant we investigated and optimized the design of porous hydrogel scaffolds for
vascularized tissue formation. In the previous cycle we developed techniques for polymer synthesis and
design, evaluated vascularization and cellular response to these biomaterial scaffolds in vitro, in vivo, and in
silico, and investigated new imaging techniques for the evaluation of tissue engineering strategies. These
studies illustrate our ability to promote and influence vascular ingrowth into engineered tissues. Challenges
remain in regards to achieving vascular ingrowth sufficient for engineering large volumes of bone, coordinating
vascularization and bone formation and engineering complex structures suitable for clinical application. The
broad goals of this proposal are to 1) investigate and optimize the design of biosignal-embedded poly(ethylene
glycol)-based hydrogels for engineering vascularized bone and 2) apply these materials for engineering
vascularized bone for reconstruction of large, complex craniofacial defects. In order to achieve our goals we
will complete the following specific aims:
Objective 1: Investigate and optimize the generation of gradients scaffolds for stimulating vascularized tissue
invasion into porous hydrogels.
Objective 2: Investigate porous hydrogel systems for coordination of vascularization and bone formation in
porous hydrogels in vitro and in vivo.
Objective 3: Develop topological optimization methods for applying the clinically-translatable large animal
model to engineer vascularized bone of appropriate volume and structure for clinical application.
This is an ambitious proposal focused on the optimization of techniques that will bring new
reconstructive techniques closer to the clinic.
组织工程疗法成功转化为临床应用将受益
退伍军人需要克服许多技术、生物和外科挑战。组织体积
可以改造的范围受到刺激形成稳定血管的程度的限制。一个
需要广泛、稳定的血液供应来满足新组织和大多数组织中的物质运输需求
方法针对小体积临床前模型中的工程组织进行了优化。我们已经证明
植入含有针对骨膜的组织工程疗法模型的腔室可以导致
生成临床上合适形状和体积的三维血管化骨。4
该技术已转化为临床应用,但需要自体骨源
室组件。这种方法的广泛应用需要确定替代的、非
自体组织来源。组织工程有潜力为腔室提供替代来源
成分。
在我们之前的 MERIT 资助中,我们研究并优化了多孔水凝胶支架的设计
血管化组织形成。在上一个周期中,我们开发了聚合物合成技术和
在体外、体内和体内设计、评估这些生物材料支架的血管化和细胞反应
silico,并研究了用于评估组织工程策略的新成像技术。这些
研究表明我们有能力促进和影响血管向工程组织内生长。挑战
仍然致力于实现足以工程化大量骨骼的血管向内生长,协调
血管化和骨形成以及适合临床应用的工程复杂结构。这
该提案的主要目标是 1) 研究和优化生物信号嵌入聚乙烯的设计
用于工程血管化骨的基于乙二醇)的水凝胶,2)将这些材料应用于工程
用于重建大型复杂颅面缺损的血管化骨。为了实现我们的目标,我们
将完成以下具体目标:
目标 1:研究并优化用于刺激血管化组织的梯度支架的生成
侵入多孔水凝胶。
目标 2:研究协调血管化和骨形成的多孔水凝胶系统
体外和体内多孔水凝胶。
目标3:开发应用于临床可移植大型动物的拓扑优化方法
模型来设计适当体积和结构的血管化骨以供临床应用。
这是一个雄心勃勃的提案,重点是技术优化,将带来新的
更接近临床的重建技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC M BREY其他文献
ERIC M BREY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC M BREY', 18)}}的其他基金
Synthetic Matrices for Vascularization of Engineered Tissues
用于工程组织血管化的合成基质
- 批准号:
8195594 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Synthetic Matrices for Vascularization of Engineered Tissues
用于工程组织血管化的合成基质
- 批准号:
8155330 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Synthetic Matrices for Vascularization of Engineered Tissues
用于工程组织血管化的合成基质
- 批准号:
7931857 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Guided Tissue Engineering of 3D Vascularized Tissues
3D 血管化组织的引导组织工程
- 批准号:
8974244 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Guided Tissue Engineering of 3D Vascularized Tissues
3D 血管化组织的引导组织工程
- 批准号:
8634262 - 财政年份:2009
- 资助金额:
-- - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




