Stem Cell-Based In vivo Models of Human Genetic Liver Diseases
基于干细胞的人类遗传性肝病体内模型
基本信息
- 批准号:8812710
- 负责人:
- 金额:$ 58.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlagille SyndromeAllelesAlpers&apos SyndromeAnimal ModelAnimalsBile fluidCell LineCell physiologyCellsChildhoodCoupledDefectDevelopmentDiseaseDropoutEngineeringEpithelial CellsGanciclovirGenesGeneticGenetic EngineeringGenetically Engineered MouseHepaticHepatocyteHereditary DiseaseHeterozygoteHistologyHumanHuman GeneticsIn VitroIndividualKnock-outLigandsLiverLiver RegenerationLiver diseasesMethodologyMethodsMitochondriaModelingMusMutationNotch Signaling PathwayOrganPathologyPatientsPharmaceutical PreparationsPhenotypePhysiologyPlayPolymeraseReagentRefractoryRegenerative MedicineRelative (related person)RoleSeizuresSignal TransductionSolidStem cellsTechniquesTestingToxic effectTranscription CoactivatorTransplantationZidovudinebasebile ductcell typedisease-causing mutationfialuridinehuman stem cellshuman tissueimprovedin vitro Modelin vivoin vivo Modelinduced pluripotent stem cellinfancyinnovationinsightliver cell proliferationmutantnotch proteinnovelnucleaseorgan growthpublic health relevancereconstitutionrepairedresearch studysafety testingscreeningstemvalproate
项目摘要
DESCRIPTION (provided by applicant): Over the last two decades, the genetic basis for many human genetic diseases has been elucidated, and the ability to generate iPS cells from any individual with a genetic disease has made it possible to investigate the impact that genetic changes have on cell function in vitro. However, since the primary objectives of regenerative medicine are to repair and to replace human tissues, it is of critical importance to characterize genetic factors affecting organ development and function. Furthermore, in many situations, animal models, including genetically engineered mice, do not accurately reflect human organ physiology. Because of these roadblocks, the creation of an experimental platform for studying human organ development and function, which utilizes iPS cells generated from individuals with genetic disease, would represent a transformative advance with far reaching impact. We have recently developed a novel murine model for human liver regeneration, and novel methodology for differentiating human stem-progenitor cells into hepatic cells that can efficiently reconstitut human liver in this model. These highly innovative methods will be coupled to create the first human stem cell-based in vivo models for two human genetic diseases that cause liver pathology: Alagille syndrome (ALGS) and Alpers syndrome. If successful, this platform could be used to create in vivo models for many other human genetic diseases. We will also improve upon recently developed genetic engineering methodology to efficiently introduce (or revert) disease-causing mutations in human stem cells, and will characterize the effect of the altered allele (relative to isogenic cells) on human liver disease-related phenotypes in vivo. The pathobiology for each of these diseases cannot be properly analyzed using cellular or murine genetic knockout models. For example, the ALGS model will be used to answer fundamental questions about the role that a key signaling pathway (Notch) plays in the development of a solid human organ (liver), and to characterize the mechanisms underlying the highly variable disease manifestations that arise from seemingly similar genetic alterations in patients. Beyond this, these stem cell-based models have other transformative applications. Since many drugs have unexpectedly caused severe mitochondrial toxicity in humans, and we currently lack predictive screening methods to identify them, we will determine if the Alpers syndrome model (or an in vitro version using the iPS cells with the causative mutations) can be used to predict drug-induced mitochondrial toxicity in humans.
描述(由申请人提供):在过去的二十年中,许多人类遗传疾病的遗传基础已经阐明,并且从任何患有遗传疾病的个体产生iPS细胞的能力使得研究遗传变化对体外细胞功能的影响成为可能。然而,由于再生医学的主要目标是修复和替换人体组织,因此表征影响器官发育和功能的遗传因素至关重要。此外,在许多情况下,包括基因工程小鼠在内的动物模型不能准确反映人体器官的生理学。 由于这些障碍,建立一个研究人类器官发育和功能的实验平台,利用遗传疾病个体产生的iPS细胞,将代表一个具有深远影响的变革性进步。我们最近开发了一种新的人类肝再生小鼠模型,以及将人类干祖细胞分化为肝细胞的新方法,该方法可以在该模型中有效地重建人类肝脏。这些高度创新的方法将结合起来,为两种导致肝脏病理学的人类遗传疾病:Alagille综合征(ALGS)和Alpers综合征创建第一个基于人类干细胞的体内模型。如果成功,该平台可用于创建许多其他人类遗传疾病的体内模型。我们还将改进最近开发的基因工程方法,以有效地在人类干细胞中引入(或恢复)致病突变,并将表征改变的等位基因(相对于同基因细胞)对体内人类肝脏疾病相关表型的影响。这些疾病中的每一种的病理生物学不能使用细胞或鼠基因敲除模型来适当地分析。例如,ALGS模型将用于回答有关关键信号通路(Notch)在实体人体器官(肝脏)发育中所起作用的基本问题,并表征患者中看似相似的遗传改变引起的高度可变疾病表现的机制。除此之外,这些基于干细胞的模型还有其他变革性的应用。由于许多药物意外地在人类中引起严重的线粒体毒性,并且我们目前缺乏预测筛选方法来识别它们,我们将确定Alpers综合征模型(或使用具有致病突变的iPS细胞的体外版本)是否可用于预测药物诱导的人类线粒体毒性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY A PELTZ其他文献
GARY A PELTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY A PELTZ', 18)}}的其他基金
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10198889 - 财政年份:2017
- 资助金额:
$ 58.87万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10406825 - 财政年份:2017
- 资助金额:
$ 58.87万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10515960 - 财政年份:2017
- 资助金额:
$ 58.87万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10075085 - 财政年份:2017
- 资助金额:
$ 58.87万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
9926473 - 财政年份:2017
- 资助金额:
$ 58.87万 - 项目类别:
相似海外基金
Resolving Uncertainty in Alagille Syndrome Diagnostics
解决阿拉吉尔综合征诊断中的不确定性
- 批准号:
10734881 - 财政年份:2023
- 资助金额:
$ 58.87万 - 项目类别:
Augmented Notch signaling as a therapeutic approach for Alagille Syndrome
增强型 Notch 信号传导作为 Alagille 综合征的治疗方法
- 批准号:
10504974 - 财政年份:2022
- 资助金额:
$ 58.87万 - 项目类别:
Augmented Notch signaling as a therapeutic approach for Alagille Syndrome
增强型 Notch 信号传导作为 Alagille 综合征的治疗方法
- 批准号:
10672969 - 财政年份:2022
- 资助金额:
$ 58.87万 - 项目类别:
Alagille Syndrome Scientific Meeting - Measuring What Matters
阿拉吉尔综合症科学会议 - 衡量重要的事情
- 批准号:
10469076 - 财政年份:2022
- 资助金额:
$ 58.87万 - 项目类别:
Targeting POGLUT1 to promote biliary development in Alagille syndrome
靶向 POGLUT1 促进 Alagille 综合征胆道发育
- 批准号:
10449607 - 财政年份:2022
- 资助金额:
$ 58.87万 - 项目类别:
Molecular and cellular basis of the renal diseases associated with Alagille Syndrome
阿拉吉尔综合征相关肾脏疾病的分子和细胞基础
- 批准号:
10617239 - 财政年份:2021
- 资助金额:
$ 58.87万 - 项目类别:
Molecular and cellular basis of the renal diseases associated with Alagille Syndrome
阿拉吉尔综合征相关肾脏疾病的分子和细胞基础
- 批准号:
10209370 - 财政年份:2021
- 资助金额:
$ 58.87万 - 项目类别:
Molecular and cellular basis of the renal diseases associated with Alagille Syndrome
阿拉吉尔综合征相关肾脏疾病的分子和细胞基础
- 批准号:
10399602 - 财政年份:2021
- 资助金额:
$ 58.87万 - 项目类别:
Combined genetic analyses can achieve efficient diagnostic yields for subjects with Alagille syndrome
结合遗传分析可以对阿拉吉勒综合征受试者实现有效的诊断率
- 批准号:
17K11516 - 财政年份:2017
- 资助金额:
$ 58.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Negative regulation of Jagged1 by glycosylation: towards a mechanism-based therapy for Alagille syndrome
糖基化对 Jagged1 的负调控:针对 Alagille 综合征的基于机制的治疗
- 批准号:
9310392 - 财政年份:2016
- 资助金额:
$ 58.87万 - 项目类别:














{{item.name}}会员




