Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
基本信息
- 批准号:10406825
- 负责人:
- 金额:$ 1.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesBiochemical PathwayBrainChromosome MappingCocaineCommunitiesComputing MethodologiesConsumptionCustomDataData AnalysesData SetDevelopmentDrug AddictionDrug abuseEngineeringFentanylGene ExpressionGenesGeneticGenetic TranscriptionGenetic VariationGenomeGenomic SegmentHaplotypesInbred StrainInbred Strains MiceIndividualMeasuresMethamphetamineMethodsMorbidity - disease rateMorphineMusNicotinePathway interactionsPatternPhenotypePlayPopulationPopulations at RiskPredispositionPreventionPropertyPublic HealthResearch PersonnelRoleScienceTestingTimeTissuesValidationWorkaddictionbasecomputerized toolscostdrug of abuseexperimental studygenetic analysisgenetic variantinterestlarge datasetsmetabolomicsmultiple omicsnew therapeutic targetnovelresponsesocietal coststherapeutic developmenttrait
项目摘要
Project Summary/Abstract
Due to the increased morbidity and societal cost of drug abuse, identification of genetic factors affecting the
response to drugs of abuse (DOA) are of particular interest because this will aid in identifying at risk populations
and could provide potential novel targets for therapeutic development. However, a major challenge in biomedical
science is determining how genetic differences within a population affect the properties (i.e. phenotypes, traits)
of an individual. Using conventional methods, it often requires years of painstaking work to discover and
characterize a genetic variant that affects a given phenotypic response. Several years ago, we developed a more
efficient method for mapping genes to traits, called haplotype-based computational genetic mapping (HBCGM).
In an HBCGM experiment, a property of interest is measured in inbred mouse strains; and genetic factors are
computationally predicted by identifying the genomic regions where the pattern of genetic variation correlates
with the distribution of trait values among the strains. HBCGM analyses are completed much more quickly than
conventional genetic analysis methods. However, the methods used for experimental validation of genetic factors
have limitations and are time consuming.
This project will further develop computational methods that will enable genetic factors affecting many important
biomedical traits to be discovered and experimentally characterized. A high-throughput version of HBCGM (HT-
HBCGM) will be used to analyze 8,225 publicly available datasets, which measure 213,000 responses in panels
of inbred mouse strains. We deploy a novel method that increases genetic discovery power by exploiting the
redundancy present in the many datasets that examine similar responses. Novel computational tools that
facilitate the integrated analysis of genetic, transcriptional and metabolomic data will also be developed. This
includes specialized metabolic networks (for brain and 3 other tissues) for computationally identifying
metabolomic changes that correlate with gene expression or genetic differences. To stimulate other investigators
to make genetic discoveries, all results and methods from this project will be made fully available to the scientific
community. These computational tools will be used to analyze customized ‘multi-omic’ (genetic, transcriptional,
and metabolomic) datasets that measure: (i) fifteen responses of inbred strain panels to four DOA (cocaine,
methamphetamine, fentanyl, and nicotine); and (ii) corresponding DOA induced transcriptional and
metabolomic changes in brain. Integrated analysis of this data will identify genes/pathways affecting the
response to DOA. We then apply a high efficiency method for engineering specific allelic changes into the
genome of inbred strains, and the engineered lines are used to experimentally test the effect of an identified
genetic factor on the response to a DOA.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY A PELTZ其他文献
GARY A PELTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY A PELTZ', 18)}}的其他基金
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10198889 - 财政年份:2017
- 资助金额:
$ 1.39万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10515960 - 财政年份:2017
- 资助金额:
$ 1.39万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
10075085 - 财政年份:2017
- 资助金额:
$ 1.39万 - 项目类别:
Computational Methods for Identification of Genetic Factors Affecting the Response to Drug Abuse
识别影响药物滥用反应的遗传因素的计算方法
- 批准号:
9926473 - 财政年份:2017
- 资助金额:
$ 1.39万 - 项目类别:
Stem Cell-Based In vivo Models of Human Genetic Liver Diseases
基于干细胞的人类遗传性肝病体内模型
- 批准号:
8812710 - 财政年份:2015
- 资助金额:
$ 1.39万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 1.39万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 1.39万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 1.39万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 1.39万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 1.39万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 1.39万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 1.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 1.39万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 1.39万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 1.39万 - 项目类别:














{{item.name}}会员




