Human-Specific Gain and Loss of Function

人类特有的功能获得和丧失

基本信息

  • 批准号:
    8796200
  • 负责人:
  • 金额:
    $ 5.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-02-01 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The proposed research will seek to utilize population genetic data to distinguish regions of the human genome experiencing purifying selection from unconstrained genomic regions. Because genomic sequences subject to selective constraint perform functions beneficial to the organism, this work will reveal previously unknown functional regions of the human genome. In particular, since this approach does not rely on comparisons between humans and closely related species, it can uncover regions acquiring or losing selective constraint after humans split from other great apes. Regions acquiring function during this time period would represent an important class of recent human adaptations, and could reveal molecular changes responsible for uniquely human phenotypes. Beyond its evolutionary importance, this work would improve the functional annotation of the human genome, revealing functional regions that could result in harmful effects if disrupted, and that cannot be detected from comparative genomic techniques. In addition to revealing human-specific gains-of- function, the proposed project would allow for detection of losses-of-function occurring since the human- chimpanzee divergence. These events could also underlie important phenotypic changes in recent human evolution, as several known human-specific losses-of-function were adaptive. Even fitness-neutral losses of function are informative, as they may reveal differences in selective pressures allowing certain functions to be lost in humans but requiring them to be maintained in our relatives. Finally, the work proposed here will combine population genetic and phylogenetic data to reveal constrained regions with better accuracy than can be achieved by examining either of these types of data alone. This will result in further improvements to the functional annotation of the human genome, especially with respect to non-protein-coding functional regions that cannot be reliably detected by ab initio techniques. Performing this research will improve the applicant's knowledge of population genetics and computational methods that can leverage polymorphism to draw inferences about the selective and functional importance of different genomic loci. Instruction from a sponsor and co-sponsor with expertise in both of these areas, as well as interaction with other faculty members and postdocs at the sponsor's institution, will be invaluable for improving the applicant's skills. This experience wil greatly enhance the applicant's chances of achieving his goal of succeeding as an independent scientist running a lab at a research university.
DESCRIPTION (provided by applicant): The proposed research will seek to utilize population genetic data to distinguish regions of the human genome experiencing purifying selection from unconstrained genomic regions. Because genomic sequences subject to selective constraint perform functions beneficial to the organism, this work will reveal previously unknown functional regions of the human genome. In particular, since this approach does not rely on comparisons between humans and closely related species, it can uncover regions acquiring or losing selective constraint after humans split from other great apes. Regions acquiring function during this time period would represent an important class of recent human adaptations, and could reveal molecular changes responsible for uniquely human phenotypes. Beyond its evolutionary importance, this work would improve the functional annotation of the human genome, revealing functional regions that could result in harmful effects if disrupted, and that cannot be detected from comparative genomic techniques. In addition to revealing human-specific gains-of- function, the proposed project would allow for detection of losses-of-function occurring since the human- chimpanzee divergence. These events could also underlie important phenotypic changes in recent human evolution, as several known human-specific losses-of-function were adaptive. Even fitness-neutral losses of function are informative, as they may reveal differences in selective pressures allowing certain functions to be lost in humans but requiring them to be maintained in our relatives. Finally, the work proposed here will combine population genetic and phylogenetic data to reveal constrained regions with better accuracy than can be achieved by examining either of these types of data alone. This will result in further improvements to the functional annotation of the human genome, especially with respect to non-protein-coding functional regions that cannot be reliably detected by ab initio techniques. Performing this research will improve the applicant's knowledge of population genetics and computational methods that can leverage polymorphism to draw inferences about the selective and functional importance of different genomic loci. Instruction from a sponsor and co-sponsor with expertise in both of these areas, as well as interaction with other faculty members and postdocs at the sponsor's institution, will be invaluable for improving the applicant's skills. This experience wil greatly enhance the applicant's chances of achieving his goal of succeeding as an independent scientist running a lab at a research university.

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DANIEL R SCHRIDER其他文献

DANIEL R SCHRIDER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DANIEL R SCHRIDER', 18)}}的其他基金

Advancing evolutionary genetic inference in humans and other taxa
推进人类和其他类群的进化遗传推断
  • 批准号:
    10388396
  • 财政年份:
    2020
  • 资助金额:
    $ 5.42万
  • 项目类别:
Advancing evolutionary genetic inference in humans and other taxa
推进人类和其他类群的进化遗传推断
  • 批准号:
    10207692
  • 财政年份:
    2020
  • 资助金额:
    $ 5.42万
  • 项目类别:
Advancing evolutionary genetic inference in humans and other taxa
推进人类和其他类群的进化遗传推断
  • 批准号:
    10028474
  • 财政年份:
    2020
  • 资助金额:
    $ 5.42万
  • 项目类别:
Advancing evolutionary genetic inference in humans and other taxa
推进人类和其他类群的进化遗传推断
  • 批准号:
    10612871
  • 财政年份:
    2020
  • 资助金额:
    $ 5.42万
  • 项目类别:
Inferring selection from human population genomic data
从人类基因组数据推断选择
  • 批准号:
    9180486
  • 财政年份:
    2016
  • 资助金额:
    $ 5.42万
  • 项目类别:
Human-Specific Gain and Loss of Function
人类特有的功能获得和丧失
  • 批准号:
    8457179
  • 财政年份:
    2013
  • 资助金额:
    $ 5.42万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
  • 批准号:
    2317873
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 5.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了