ROS driven mitochondrial-telomere dysfunction during environmental stress
环境应激期间ROS驱动线粒体端粒功能障碍
基本信息
- 批准号:8926521
- 负责人:
- 金额:$ 20.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-07 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:1-Methyl-4-phenylpyridiniumAnimal ModelBiogenesisBiological AssayCell SurvivalCellsChemicalsChemistryComplexDNA DamageDevelopmentDiseaseEmbryoEnvironmental ExposureEnvironmental Risk FactorExhibitsExposure toFoundationsFunctional disorderGenerationsHousingHumanInterventionLifeLightMaintenanceMammalian CellMeasuresMediatingMitochondriaMitochondrial DNAModelingMolecularMonitorNerve DegenerationNeuronsNuclearOrganParkinson DiseaseParkinsonian DisordersPathogenesisPathologyPeptidesPesticidesPhasePhenotypePhysiologicalProcessProductionProteinsReactive Oxygen SpeciesRoleRotenoneSinglet OxygenSiteStressStructureSymptomsSystemTERF1 geneTechnologyTelomere ShorteningTelomere-Binding ProteinsTestingTetanus Helper PeptideToxic Environmental SubstancesToxic effectTransgenic AnimalsTransgenic MiceTransgenic OrganismsVisible RadiationWhole OrganismZebrafishage relatedcell typedopaminergic neuronenvironmental stressorevent cyclefunctional declinehealthy aginghuman diseaseinnovationinsightmitochondrial dysfunctionneuron lossnoveloxidative damagepublic health relevanceresponsesensortelomeretooltoxicant
项目摘要
DESCRIPTION (provided by applicant): Maintenance of mitochondrial and telomere function are critical for healthy aging, and significant cross-talk occurs between these distinct compartments. Many environmental factors cause mitochondrial dysfunction and subsequent reactive oxygen species (ROS) generation that particularly damage the telomeres. This project will directly test the hypothesis that oxidative damage at telomeres cause mitochondrial dysfunction, and conversely that oxidative damage to mitochondrial DNA cause telomere dysfunction, and that this reciprocal damage contributes to several environmentally-induced human disease, including neurodegeneration in Parkinson's disease (PD). We will monitor ROS flux in distinct cellular compartments using a highly innovative system consisting of fluorescent protein tagging and visible light to rapidly induce ROS, and fluorogen-activating peptides (FAPs) with unique chemical sensors to detect ROS. These FAPs will also be used with different chemical moieties to generate different types of ROS. We will use an environmental pesticide associated with PD as a mitochondrial toxicant to examine ROS flux and subsequent telomere damage. The R21 phase will develop and validate this approach first in human cells and will generate transgenic animals for applying this system to zebrafish. Aim 1 will use the KillerRed ROS-generating system to examine how ROS generation in mitochondria impacts telomere function, and reciprocally how ROS generation at telomeres alters mitochondrial function. Aim 2 will develop the FAP system for sensing and producing ROS within the mitochondria or telomeres, and will use this technology to examine ROS flux from the mitochondria to the telomeres. We will create transgenic zebrafish driver lines for localized FAP-mediated ROS sensing and generation in the mitochondria or telomeres. The R33 phase will apply the targeted ROS sensing/producing system toward investigating the underlying mechanisms of dysfunctional mitochondria and telomere cross-talk in human neuronal cells (Aim 3), in transgenic zebrafish embryos (Aim 4) and in a specific zebrafish model of PD (Aim 5). These innovative studies will measure the temporal and spatial generation of ROS in living cells and provide mechanistic insight into how dysfunctional telomeres or mitochondria influence each other in the process of environmentally-induced human diseases, including PD. This project builds tools and capacity for examining ROS-mediated flux and mitochondrial cross-talk in response to environmental stressors. Completion of this project will lay the foundation for developing new interventions to better mitigate the negative effects of environmental exposures on telomere and mitochondria function, serving to ameliorate or delay aging-related diseases and pathologies.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia L Opresko其他文献
Patricia L Opresko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia L Opresko', 18)}}的其他基金
Excision Repair of Environmental Telomere Damage
环境端粒损伤的切除修复
- 批准号:
10617802 - 财政年份:2019
- 资助金额:
$ 20.79万 - 项目类别:
Excision Repair of Environmental Telomere Damage
环境端粒损伤的切除修复
- 批准号:
10152593 - 财政年份:2019
- 资助金额:
$ 20.79万 - 项目类别:
Excision Repair of Environmental Telomere Damage
环境端粒损伤的切除修复
- 批准号:
10397054 - 财政年份:2019
- 资助金额:
$ 20.79万 - 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
- 批准号:
9064774 - 财政年份:2013
- 资助金额:
$ 20.79万 - 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
- 批准号:
8854084 - 财政年份:2013
- 资助金额:
$ 20.79万 - 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
- 批准号:
8556629 - 财政年份:2013
- 资助金额:
$ 20.79万 - 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
- 批准号:
9277466 - 财政年份:2013
- 资助金额:
$ 20.79万 - 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
- 批准号:
8728857 - 财政年份:2013
- 资助金额:
$ 20.79万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists