Excision Repair of Environmental Telomere Damage

环境端粒损伤的切除修复

基本信息

项目摘要

Summary Numerous studies in human populations, human tissue, animal models and cell culture demonstrate that environmental genotoxic and oxidative stress are associated with accelerated telomere shortening and dysfunction. Telomeres at chromosome ends are essential for genome stability and sustained cell proliferation, and dysfunctional telomeres contribute to degenerative diseases and carcinogenesis in humans. The goals of this project are to advance exciting discoveries and highly innovative work from two NIEHS funded R01 awards investigating the consequences of nucleobase damage and excision repair at telomeres. The overarching hypothesis for this R35 proposal is that telomere shortening and dysfunction caused by environmental genotoxic and oxidative stress, occurs via formation of specific base lesions and toxic repair intermediates that directly interfere with telomere replication and maintenance. Working with collaborators we pioneered a highly innovative chemoptogenetic tool that selectively induces DNA lesions at telomeres. This technology is transformative because targeting well-defined base damage to telomeres allows us to unequivocally attribute phenotypic changes and health outcomes to the induced telomere lesions, eliminating confounding effects of damage elsewhere. We fully validated this system for the targeted formation of a common oxidative guanine lesion at telomeres, and remarkably, we discovered that the chronic generation this lesion induces profound hallmarks of telomere dysfunction that mimic genetic loss of telomere shelterin proteins. This project will probe and uncover the mechanisms of DNA lesion induced telomere loss and dysfunction. A major strategy is to extend and modify this flexible technology in a phased approach for introducing base damage, toxic repair intermediates, bulky monoadducts, and other lesion types. We will measure various cellular and telomeric endpoints after lesion induction and will use candidate and unbiased approaches to identify proteins required to protect telomeres against the various forms of environmentally relevant DNA damage. This chemoptogenetic tool has been adapted for use in model organisms, and as the R35 evolves we will translate what we learn in cell culture to experiments in transgenic zebrafish and mice. Using this system, we will generate telomeric damage in key organs and cell types and will measure the impact on organ function and health. This program will lead to significant advances in mechanistic understanding of how environmentally relevant forms of telomeric DNA lesions impact telomere function, cellular function, and organism health. Ultimately, knowledge gained from this program will be highly valuable for developing new strategies that 1) preserve telomeres to ameliorate the effects of genotoxic and oxidative stress in healthy cells or conversely, that 2) inhibit telomere maintenance in malignant cells to arrest proliferation.
总结 在人群、人体组织、动物模型和细胞培养中的大量研究表明, 环境遗传毒性和氧化应激与加速端粒缩短有关, 功能障碍染色体末端的端粒对于基因组的稳定性和细胞的持续生长至关重要。 增殖和功能失调的端粒有助于人类的退行性疾病和致癌作用。 该项目的目标是推进两个NIEHS的令人兴奋的发现和高度创新的工作 资助R01奖研究端粒的核碱基损伤和切除修复的后果。 R35的主要假设是端粒缩短和功能障碍是由 环境遗传毒性和氧化应激,通过形成特定的基底损伤和毒性修复发生 直接干扰端粒复制和维持的中间体。与合作者一起, 开创了一种高度创新的化学光遗传学工具,选择性地诱导端粒的DNA损伤。这 技术是变革性的,因为针对端粒的明确碱基损伤使我们能够 明确地将表型变化和健康结果归因于诱导的端粒损伤, 其他地方的损害的影响。我们充分验证了该系统的目标形成, 端粒中常见的鸟嘌呤氧化损伤,值得注意的是,我们发现, 损伤诱导端粒功能障碍的深刻标志,模拟端粒遮蔽的遗传丢失 proteins.本项目将探讨和揭示DNA损伤诱导端粒丢失的机制, 功能障碍一个主要的战略是分阶段地扩展和修改这种灵活的技术, 引入碱基损伤、毒性修复中间体、庞大的单加合物和其它损伤类型。我们将 在损伤诱导后测量各种细胞和端粒终点,并将使用候选和无偏 鉴定保护端粒免受各种形式的环境污染所需的蛋白质的方法 相关的DNA损伤这种化学光遗传学工具已被改造用于模式生物,并且作为 我们将把我们在细胞培养中学到的东西转化为转基因斑马鱼和小鼠的实验。 使用这个系统,我们将在关键器官和细胞类型中产生端粒损伤,并将测量其影响。 对器官功能和健康的影响这一计划将导致机械理解的重大进展, 端粒DNA损伤的环境相关形式如何影响端粒功能,细胞功能, 有机体健康最终,从该计划中获得的知识将对开发新的 策略:1)保存端粒以改善健康细胞中遗传毒性和氧化应激的影响 或相反,2)抑制恶性细胞中的端粒维持以阻止增殖。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricia L Opresko其他文献

Patricia L Opresko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patricia L Opresko', 18)}}的其他基金

2023 Mammalian DNA Repair GRC & GRS
2023 哺乳动物 DNA 修复 GRC
  • 批准号:
    10607587
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
Excision Repair of Environmental Telomere Damage
环境端粒损伤的切除修复
  • 批准号:
    10152593
  • 财政年份:
    2019
  • 资助金额:
    $ 93.13万
  • 项目类别:
Excision Repair of Environmental Telomere Damage
环境端粒损伤的切除修复
  • 批准号:
    10397054
  • 财政年份:
    2019
  • 资助金额:
    $ 93.13万
  • 项目类别:
ROS driven mitochondrial-telomere dysfunction during environmental stress
环境应激期间ROS驱动线粒体端粒功能障碍
  • 批准号:
    8926521
  • 财政年份:
    2015
  • 资助金额:
    $ 93.13万
  • 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
  • 批准号:
    9064774
  • 财政年份:
    2013
  • 资助金额:
    $ 93.13万
  • 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
  • 批准号:
    8854084
  • 财政年份:
    2013
  • 资助金额:
    $ 93.13万
  • 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
  • 批准号:
    8556629
  • 财政年份:
    2013
  • 资助金额:
    $ 93.13万
  • 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
  • 批准号:
    9277466
  • 财政年份:
    2013
  • 资助金额:
    $ 93.13万
  • 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
  • 批准号:
    8728857
  • 财政年份:
    2013
  • 资助金额:
    $ 93.13万
  • 项目类别:
Mechanisms of Telomeric DNA Loss and Repair
端粒 DNA 丢失和修复的机制
  • 批准号:
    7900269
  • 财政年份:
    2009
  • 资助金额:
    $ 93.13万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 93.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了