Deciphering microbial virulence mechanisms during Legionella pneumophila infection

破译嗜肺军团菌感染期间的微生物毒力机制

基本信息

项目摘要

Microbial pathogens have developed a variety of strategies to infect the human host and cause disease. Many Gram-negative bacteria use type IV secretion systems (T4SSs) to deliver bacterial proteins, called effectors, into host cells. The effectors help to modulate signaling events within the host in order to create conditions favorable for bacterial survival. We are committed to the in-depth analysis of microbial virulence strategies. We use as a model organism the bacterium Legionella pneumophila, the causative agent of a potentially fatal respiratory infection known as Legionnaires' disease. Each year more individuals in the U.S. contract Legionnaires' disease (8,000 to 18,000) than there are cases of ALS (Amyotrophic Lateral Sclerosis or Lou Gehrig's Disease), thus making L. pneumophila a significant health threat and a considerable economic burden. Moreover, the infection cycle of L. pneumophila shows numerous parallels to the virulence programs of Salmonella, Chlamydia, Mycobacterium, Coxiella, and many other human pathogens that manipulate host cells from within a membrane-enclosed compartment. In addition, given that a type IV secretion system (T4SS), the major virulence apparatus of L. pneumophila, is present in numerous animal and plant pathogens including Helicobacter or Agrobacterium, the in-depth analysis of this translocation system and its cargo proteins, called effectors, is of great importance for our general understanding of microbial virulence. Last but not least, the effector proteins that are used by L. pneumophila to manipulate host cell processes display remarkable parallels to eukaryotic proteins, and deciphering their function will yield valuable insight into mechanistic and regulatory concepts about processes that occur within our own cells. Thus, obtaining a detailed understanding of Legionella's biology and its virulence strategies is essential to more effectively diagnose, treat, and prevent this dangerous pneumonia, and will profoundly improve people's lives and w L. pneumophila is ubiquitously found in freshwater habitats such as cooling towers, air conditioning systems, or water fountains. Major outbreaks of Legionnaires' disease occur when water from contaminated sources is aerosolized and subsequently inhaled by humans. Immune-compromised individuals, infants, or the elderly are at an elevated risk of contracting an infection. According to the Center for Disease Control and Prevention (CDC), the number of diagnosed Legionnaires' disease cases within the U.S. has doubled over the past decade, making this microorganism is an emerging public health threat. Upon inhalation, L. pneumophila infects and replicates within alveolar macrophages, specialized immune cells within our lung. L. pneumophila delivers close to 300 proteins, called effectors, through a T4SS into the host cell. Most L. pneumophila effector proteins have not been characterized in detail, and their activities and host targets remain unknown. Interference with T4SS activity renders L. pneumophila avirulent, underscoring the important role of the translocated effectors for infection. Over the past funding period, we have made important progress in developing and applying new research tools to decipher the biological role of effectors. We revealed that during infection L. pneumophila translocates several effectors that mimic host cell proteins with E3 ubiquitin ligase activity. E3 ubiquitin ligases catalyze the final step in an enzymatic cascade that results in the transfer of the small protein ubiquitin from E2 ubiquitin-conjugating enzymes to a particular target protein. Poly-ubiquitination of target proteins alters their cellular fate, often resulting in their proteasomal degradation. By encoding its own E3 ligases, L. pneumophila can hijack the host cell ubiquitination machinery and use it for its own benefit. We found that one of the L. pneumophila effectors, in addition to exploiting host cell ubiquitination, takes advantage of yet another host cell machinery that controls S-palmitoylation, a reversible form of lipidation. The covalent attachment of a palmitoyl moiety to the L. pneumophila effector allows the protein to stably associate with the Golgi compartment, a cell organelle involved in protein secretion. Without S-palmitoylation, the L. pneumophila effector fails to properly localize to the Golgi, highlighting the importance of host cell-mediated S-palmitoylation for the function of this bacterial effector. Our studies suggest that pharmacological inhibition of S-palmitoylation may be a way to interfere with the localization and function of microbial virulence factors and to treat infections with L. pneumophila and related pathogens. In addition to the contributions described above, we also developed together with Drs. Joshua LaBaer and Ji Qiu (Arizona State University) an experimental pipeline for the comprehensive identification and validation of novel host-pathogen interactions between L. pneumophila effectors and human proteins. We employed a high throughput screening platform called NAPPA, a nucleic acid-programmable protein array composed of almost 13,000 human proteins, to detect stable interaction events between L. pneumophila effectors and their respective human targets. In addition, we adapted this platform to also monitor the modification of human proteins with adenosine monophosphate (AMP), a post-translational modification catalyzed by a variety of microbial virulence factors. By combining NAPPA with a set of in vitro and cell-based validation experiments, this pipeline has proven effective in detecting and characterizing L. pneumophila-human interactions. The flexibility of this technology also allows it to be adapted to the study of a large variety of microbial pathogens and their interactions with human host proteins. Together, these studies hold the key to obtaining an in-depth understanding not only of the virulence mechanisms of L. pneumophila and related pathogens but also of regulatory networks that exist within our own cells and that have been hijacked by L. pneumophila into its virulence program.
微生物病原体已经发展出多种策略来感染人类宿主并引起疾病。许多革兰氏阴性细菌使用IV型分泌系统(t4ss)将细菌蛋白(称为效应物)输送到宿主细胞中。效应器有助于调节宿主内的信号事件,以创造有利于细菌生存的条件。我们致力于微生物毒力策略的深入分析。我们使用嗜肺军团菌作为模型生物,它是一种潜在致命的呼吸道感染,即军团病的病原体。在美国,每年有更多的人感染军团病(8000到18000),而不是ALS(肌萎缩性侧索硬化症或Lou Gehrig's病),因此嗜肺乳杆菌是一个重大的健康威胁和相当大的经济负担。此外,嗜肺乳杆菌的感染周期与沙门氏菌、衣原体、分枝杆菌、科希氏菌和许多其他人类病原体的毒力程序有许多相似之处,这些病原体在膜封闭的隔间内操纵宿主细胞。此外,考虑到IV型分泌系统(T4SS)是嗜肺乳杆菌的主要毒力装置,存在于包括幽门螺杆菌或农杆菌在内的许多动植物病原体中,对该易位系统及其货物蛋白(称为效应物)的深入分析对于我们对微生物毒力的总体理解具有重要意义。最后但并非最不重要的是,嗜肺乳杆菌用来操纵宿主细胞过程的效应蛋白与真核蛋白有显著的相似之处,破译它们的功能将对发生在我们自己细胞内的过程的机制和调节概念产生有价值的见解。因此,详细了解军团菌的生物学及其毒力策略对于更有效地诊断、治疗和预防这种危险的肺炎至关重要,并将深刻地改善人们的生活和健康

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Machner其他文献

Matthias Machner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Machner', 18)}}的其他基金

Characterization of Legionella virulence mechanisms
军团菌毒力机制的表征
  • 批准号:
    8351249
  • 财政年份:
  • 资助金额:
    $ 101.7万
  • 项目类别:
Deciphering microbial virulence mechanisms during Legionella pneumophila infection
破译嗜肺军团菌感染期间微生物的毒力机制
  • 批准号:
    10908173
  • 财政年份:
  • 资助金额:
    $ 101.7万
  • 项目类别:
Deciphering microbial virulence mechanisms during Legionella pneumophila infection
破译嗜肺军团菌感染期间微生物的毒力机制
  • 批准号:
    10266518
  • 财政年份:
  • 资助金额:
    $ 101.7万
  • 项目类别:
Characterization of Legionella virulence mechanisms
军团菌毒力机制的表征
  • 批准号:
    8553977
  • 财政年份:
  • 资助金额:
    $ 101.7万
  • 项目类别:
Characterization of Legionella virulence mechanisms
军团菌毒力机制的表征
  • 批准号:
    8736927
  • 财政年份:
  • 资助金额:
    $ 101.7万
  • 项目类别:
Deciphering microbial virulence mechanisms during Legionella pneumophila infection
破译嗜肺军团菌感染期间的微生物毒力机制
  • 批准号:
    9339261
  • 财政年份:
  • 资助金额:
    $ 101.7万
  • 项目类别:
Deciphering microbial virulence mechanisms during Legionella pneumophila infection
破译嗜肺军团菌感染期间微生物的毒力机制
  • 批准号:
    10691795
  • 财政年份:
  • 资助金额:
    $ 101.7万
  • 项目类别:
Characterization of Legionella effector proteins
军团菌效应蛋白的表征
  • 批准号:
    8149395
  • 财政年份:
  • 资助金额:
    $ 101.7万
  • 项目类别:
Deciphering microbial virulence mechanisms during Legionella pneumophila infection
破译嗜肺军团菌感染期间的微生物毒力机制
  • 批准号:
    8941540
  • 财政年份:
  • 资助金额:
    $ 101.7万
  • 项目类别:
Deciphering microbial virulence mechanisms during Legionella pneumophila infection
破译嗜肺军团菌感染期间的微生物毒力机制
  • 批准号:
    9550425
  • 财政年份:
  • 资助金额:
    $ 101.7万
  • 项目类别:

相似国自然基金

无致瘤性 Agrobacterium vitis 菌株 F2/5 抑制葡萄根瘤病的分子机制研究
  • 批准号:
    31801788
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
以D-阿洛糖为底物研究Agrobacterium tumefaciens来源的L-鼠李糖异构酶的催化机理
  • 批准号:
    31100577
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
葡萄根癌病生防菌Agrobacterium vitis E26中双组分杂合组氨酸激酶AvhS的生防功能解析
  • 批准号:
    31171892
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
土壤杆菌属(Agrobacterium)细菌新生物荥的研究
  • 批准号:
    38770003
  • 批准年份:
    1987
  • 资助金额:
    1.5 万元
  • 项目类别:
    面上项目

相似海外基金

TRTech-PGR: PlantTransform: Boosting Agrobacterium-mediated transformation efficiency in the orphan crop tef (Eragrostis tef) for trait improvement
TRTech-PGR:PlantTransform:提高孤儿作物 tef(画眉草 tef)中农杆菌介导的转化效率,以改善性状
  • 批准号:
    2327906
  • 财政年份:
    2024
  • 资助金额:
    $ 101.7万
  • 项目类别:
    Standard Grant
CAREER: Stable transformation of STEM identity by integrating cell cycle regulation with persistent infection in Agrobacterium
职业:通过将细胞周期调节与农杆菌持续感染相结合,实现 STEM 身份的稳定转化
  • 批准号:
    2238568
  • 财政年份:
    2023
  • 资助金额:
    $ 101.7万
  • 项目类别:
    Continuing Grant
TRTech-PGR: Engineering Agrobacterium to Express a Type III Secretion System to Improve Plant Transformation and Genome Editing
TRTech-PGR:工程农杆菌表达 III 型分泌系统,以改善植物转化和基因组编辑
  • 批准号:
    2219792
  • 财政年份:
    2022
  • 资助金额:
    $ 101.7万
  • 项目类别:
    Continuing Grant
TRTech-PGR: Agrobacterium-mediated transformation of the plastid genome
TRTech-PGR:农杆菌介导的质体基因组转化
  • 批准号:
    2224861
  • 财政年份:
    2022
  • 资助金额:
    $ 101.7万
  • 项目类别:
    Standard Grant
EAGER: Re-engineering Agrobacterium for T-DNA delivery to chloroplasts
EAGER:重新设计农杆菌,将 T-DNA 传递到叶绿体
  • 批准号:
    2037155
  • 财政年份:
    2020
  • 资助金额:
    $ 101.7万
  • 项目类别:
    Standard Grant
TRTech-PGR: Ensifer-mediated Transformation as an Alternative to Agrobacterium-mediated Plant Transformation of Model Plants and Crops
TRTech-PGR:Ensifer 介导的转化作为模型植物和作物农杆菌介导的植物转化的替代方案
  • 批准号:
    2006668
  • 财政年份:
    2020
  • 资助金额:
    $ 101.7万
  • 项目类别:
    Continuing Grant
Insertional Mutagenesis of Candida auris using Agrobacterium tumefaciens
使用根癌农杆菌插入诱变耳念珠菌
  • 批准号:
    9808697
  • 财政年份:
    2019
  • 资助金额:
    $ 101.7万
  • 项目类别:
Molecular Breeding of next generation Super-Agrobacterium for broad host range
适用于广泛宿主范围的下一代超级农杆菌的分子育种
  • 批准号:
    19K05964
  • 财政年份:
    2019
  • 资助金额:
    $ 101.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Light regulation of bacterial conjugation by phytochromes through modulation of protein conformation, protein dynamics and protein-protein interactions in Agrobacterium fabrum
通过调节农杆菌中的蛋白质构象、蛋白质动力学和蛋白质-蛋白质相互作用,光敏色素对细菌结合的光调节
  • 批准号:
    409240911
  • 财政年份:
    2018
  • 资助金额:
    $ 101.7万
  • 项目类别:
    Research Grants
Pathways for Colonization of Plant Genome by Agrobacterium
农杆菌定植植物基因组的途径
  • 批准号:
    1758046
  • 财政年份:
    2018
  • 资助金额:
    $ 101.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了