Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
基本信息
- 批准号:8902267
- 负责人:
- 金额:$ 32.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:Cessation of lifeClinicalComputer AssistedConsensus SequenceCritical CareDataDecision Support SystemsDevelopmentEvaluationEventGeneral HospitalsGoalsHealthHumanInjuryInterventionLeadLifeLiteratureManualsMeasuresMedicalMedical ErrorsMethodsMiningMinorMissionModalityModelingMonitorMovementOutcomePatientsPhasePredispositionProcessProtocol ComplianceProtocols documentationPublic HealthReal-Time SystemsRecoveryResearchResourcesResuscitationRiskSafetySolutionsTechnologyTestingTimeTraumaVariantWorkadverse outcomebasecomputerizedflexibilityhigh riskimprovedinjuredinnovationknowledge basemultidisciplinarypatient safetypreventradiofrequencyresponsesensorsuccess
项目摘要
DESCRIPTION (provided by applicant): Although most deviations from trauma resuscitation protocols are variations that result from the flexibility needed for managing patients with differet injuries, other deviations are "errors" that can contribute to significant adverse patient outcomes Our long-term goal is to develop computerized decision support for trauma resuscitation and other fast-paced, high-risk critical care settings that monitors workflow for deviations that are known to be associated with adverse outcomes and provides alerts to these deviations, allowing remedial actions to be taken to prevent adverse outcomes. The overall objectives for this proposal, which are the next steps in the attainment of this long-term goal, are to: (a) develop a scalable approach for recognizing activities during trauma resuscitation; and (b) identify deviations associated with adverse outcomes within the workflow of trauma resuscitation using process mining. The central hypothesis is that trauma resuscitation activities can be monitored and analyzed in real time for workflow deviations that increase the likelihood of adverse patient outcomes. The rationale for the proposed research is that real-time identification of risk conditions for adverse outcomes will allow medical teams to take measures for reducing or preventing the impact of medical errors. The central hypothesis will be tested by pursuing two specific aims: 1) develop a scalable and automatic approach for creating an event log of activities occurring during trauma resuscitation; and 2) identify and characterize the team's ability to manage major errors during trauma resuscitation. Under the first aim, the approach will involve (i) the use of radiofrequency identification (RFID) technology and other modalities to create resuscitation event logs of human movement and object use and (ii) comparisons of sensor logs with logs obtained using manual video review ("ground truth"). For the second aim, the approach will involve the development and refinement of knowledge-based resuscitation workflow models using consensus sequences of activities from manually captured event logs. This project is significant because these methods are an essential early step toward the development of computerized decision support systems that can improve outcomes by monitoring and supporting the work of critical care teams. The proposed research is innovative because it represents a substantive departure from the status quo, focusing on developing methods for obtaining data from sensors to automatically track multiple, concurrent activities and for detecting deviations associated with adverse outcomes within a variable workflow. These methods are expected to form a basis for computerized systems for real-time decision support of medical teams that improve patient outcome during trauma resuscitation and other critical care processes.
描述(由申请人提供):虽然与创伤复苏方案的大多数偏差是由于管理不同损伤的患者所需的灵活性而导致的变化,但其他偏差是可能导致严重不良患者结果的“错误”。我们的长期目标是为创伤复苏和其他快节奏、高风险的重症监护环境开发计算机化决策支持,以监控工作流程中已知与不良反应相关的偏差。 结果并对这些偏差发出警报,以便采取补救措施来防止不良结果。该提案的总体目标是实现这一长期目标的后续步骤,包括: (a) 开发一种可扩展的方法来识别创伤复苏期间的活动; (b) 使用过程挖掘识别与创伤复苏工作流程中的不良结果相关的偏差。中心假设是,可以实时监测和分析创伤复苏活动,以发现工作流程偏差,从而增加患者不良结果的可能性。拟议研究的基本原理是,实时识别不良结果的风险状况将使医疗团队能够采取措施减少或预防医疗错误的影响。中心假设将通过追求两个具体目标进行测试:1)开发一种可扩展的自动方法来创建创伤复苏期间发生的活动的事件日志; 2) 识别并描述团队处理创伤复苏期间重大错误的能力。在第一个目标下,该方法将涉及(i)使用射频识别(RFID)技术和其他方式来创建人体运动和物体使用的复苏事件日志,以及(ii)将传感器日志与使用手动视频审查(“地面实况”)获得的日志进行比较。对于第二个目标,该方法将涉及使用手动捕获的事件日志中的共识活动序列来开发和完善基于知识的复苏工作流程模型。该项目意义重大,因为这些方法是开发计算机化决策支持系统的重要早期步骤,该系统可以通过监控和支持重症监护团队的工作来改善结果。拟议的研究具有创新性,因为它代表了对现状的实质性偏离,重点是开发从传感器获取数据以自动跟踪多个并发活动以及检测与可变工作流程中的不良结果相关的偏差的方法。这些方法有望成为医疗团队实时决策支持的计算机系统的基础,从而改善创伤复苏和其他重症监护过程中患者的治疗效果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RANDALL S. BURD其他文献
RANDALL S. BURD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RANDALL S. BURD', 18)}}的其他基金
Development of a Video-based Personal Protective Equipment Monitoring System
基于视频的个人防护装备监控系统的开发
- 批准号:
10585548 - 财政年份:2023
- 资助金额:
$ 32.01万 - 项目类别:
DEVELOPMENT OF A VIDEO-BASED PERSONAL PROTECTIVE EQUIPMENT MONITORING SYSTEM
基于视频的个人防护装备监控系统的开发
- 批准号:
10644164 - 财政年份:2022
- 资助金额:
$ 32.01万 - 项目类别:
Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
- 批准号:
8761390 - 财政年份:2014
- 资助金额:
$ 32.01万 - 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
- 批准号:
10629162 - 财政年份:2014
- 资助金额:
$ 32.01万 - 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
- 批准号:
10386911 - 财政年份:2014
- 资助金额:
$ 32.01万 - 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
- 批准号:
10163257 - 财政年份:2014
- 资助金额:
$ 32.01万 - 项目类别:
Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
- 批准号:
9113070 - 财政年份:2014
- 资助金额:
$ 32.01万 - 项目类别:
A Paper-Digital Interface for Time-Critical Information Management
用于时间关键信息管理的纸质数字接口
- 批准号:
8386105 - 财政年份:2012
- 资助金额:
$ 32.01万 - 项目类别:
Improving Pediatric Trauma Triage Using High Dimensional Data Analysis
使用高维数据分析改进儿科创伤分诊
- 批准号:
8111093 - 财政年份:2010
- 资助金额:
$ 32.01万 - 项目类别:
Improving Pediatric Trauma Triage Using High Dimensional Data Analysis
使用高维数据分析改进儿科创伤分诊
- 批准号:
7642839 - 财政年份:2010
- 资助金额:
$ 32.01万 - 项目类别:
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Clinical application of computer assisted technology for hip arthroscopic surgery
计算机辅助技术在髋关节镜手术中的临床应用
- 批准号:
18K09073 - 财政年份:2018
- 资助金额:
$ 32.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer assisted clinical decision support tool for management of statins
用于他汀类药物管理的计算机辅助临床决策支持工具
- 批准号:
8715636 - 财政年份:2014
- 资助金额:
$ 32.01万 - 项目类别:
Computer assisted clinical decision support tool for management of statins
用于他汀类药物管理的计算机辅助临床决策支持工具
- 批准号:
8838249 - 财政年份:2014
- 资助金额:
$ 32.01万 - 项目类别:
Computer assisted clinical decision support tool for management of statins
用于他汀类药物管理的计算机辅助临床决策支持工具
- 批准号:
8454688 - 财政年份:2013
- 资助金额:
$ 32.01万 - 项目类别:
Computer-assisted clinical simulation teaching environment for ultrasound-guided needle placement procedures
超声引导置针手术的计算机辅助临床模拟教学环境
- 批准号:
445155-2013 - 财政年份:2013
- 资助金额:
$ 32.01万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Standardization and Evaluation of Computer-assisted Education System on Clinical Simulation in Dental and Interprofessional Education.
牙科和跨专业教育临床模拟计算机辅助教育系统的标准化和评估。
- 批准号:
24300280 - 财政年份:2012
- 资助金额:
$ 32.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study for synergic performance improvement of computer-assisted detection/diagnosis system and radiologists in clinical readingenvironment
临床阅片环境下计算机辅助检测/诊断系统与放射科医生协同性能提升研究
- 批准号:
23700573 - 财政年份:2011
- 资助金额:
$ 32.01万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Computer-assisted clinical guidelines for the management of manifestations of anxiety, aggression and depression
管理焦虑、攻击性和抑郁表现的计算机辅助临床指南
- 批准号:
nhmrc : 630596 - 财政年份:2010
- 资助金额:
$ 32.01万 - 项目类别:
NHMRC Project Grants
Development and Evaluation of Computer-assisted Education System on Clinical Simulation in Dental Education.
牙科教育临床模拟计算机辅助教育系统的开发和评估。
- 批准号:
21300303 - 财政年份:2009
- 资助金额:
$ 32.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The development and clinical treatment trial of a computer-assisted therapy for depression
计算机辅助治疗抑郁症的开发及临床治疗试验
- 批准号:
nhmrc : 141779 - 财政年份:2002
- 资助金额:
$ 32.01万 - 项目类别:
NHMRC Postgraduate Scholarships














{{item.name}}会员




