Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
基本信息
- 批准号:8761390
- 负责人:
- 金额:$ 42.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:Cessation of lifeClinicalCommitComputer AssistedConsensus SequenceCritical CareDataDecision Support SystemsDevelopmentEvaluationEventGeneral HospitalsGoalsHealthHumanInjuryInterventionLeadLifeLiteratureManualsMeasuresMedicalMedical ErrorsMethodsMiningMinorMissionModalityModelingMonitorMovementOutcomePatientsPhasePredispositionProcessProtocol ComplianceProtocols documentationPublic HealthReal-Time SystemsRecoveryResearchResourcesResuscitationRiskSafetySolutionsTechnologyTestingTimeTraumaVariantWorkadverse outcomebasecomputerizedflexibilityhigh riskimprovedinjuredinnovationknowledge basemultidisciplinarypatient safetypreventradiofrequencyresponsesensorsuccess
项目摘要
DESCRIPTION (provided by applicant): Although most deviations from trauma resuscitation protocols are variations that result from the flexibility needed for managing patients with differet injuries, other deviations are "errors" that can contribute to significant adverse patient outcomes Our long-term goal is to develop computerized decision support for trauma resuscitation and other fast-paced, high-risk critical care settings that monitors workflow for deviations that are known to be associated with adverse outcomes and provides alerts to these deviations, allowing remedial actions to be taken to prevent adverse outcomes. The overall objectives for this proposal, which are the next steps in the attainment of this long-term goal, are to: (a) develop a scalable approach for recognizing activities during trauma resuscitation; and (b) identify deviations associated with adverse outcomes within the workflow of trauma resuscitation using process mining. The central hypothesis is that trauma resuscitation activities can be monitored and analyzed in real time for workflow deviations that increase the likelihood of adverse patient outcomes. The rationale for the proposed research is that real-time identification of risk conditions for adverse outcomes will allow medical teams to take measures for reducing or preventing the impact of medical errors. The central hypothesis will be tested by pursuing two specific aims: 1) develop a scalable and automatic approach for creating an event log of activities occurring during trauma resuscitation; and 2) identify and characterize the team's ability to manage major errors during trauma resuscitation. Under the first aim, the approach will involve (i) the use of radiofrequency identification (RFID) technology and other modalities to create resuscitation event logs of human movement and object use and (ii) comparisons of sensor logs with logs obtained using manual video review ("ground truth"). For the second aim, the approach will involve the development and refinement of knowledge-based resuscitation workflow models using consensus sequences of activities from manually captured event logs. This project is significant because these methods are an essential early step toward the development of computerized decision support systems that can improve outcomes by monitoring and supporting the work of critical care teams. The proposed research is innovative because it represents a substantive departure from the status quo, focusing on developing methods for obtaining data from sensors to automatically track multiple, concurrent activities and for detecting deviations associated with adverse outcomes within a variable workflow. These methods are expected to form a basis for computerized systems for real-time decision support of medical teams that improve patient outcome during trauma resuscitation and other critical care processes.
描述(申请人提供):尽管大多数与创伤复苏方案的偏差都是由于管理不同损伤患者所需的灵活性而产生的变化,但其他偏差则是可能导致严重不良患者结果的“错误”。我们的长期目标是开发创伤复苏和其他快节奏、高风险重症监护环境,用于监控已知与不良结局相关的偏差的工作流程,并对这些偏差提供警报,允许采取补救措施以防止不良结局。该提案的总体目标是实现这一长期目标的下一步,即:(a)开发一种可扩展的方法,用于识别创伤复苏期间的活动;(B)使用流程挖掘识别与创伤复苏工作流程中不良结果相关的偏差。中心假设是,创伤复苏活动可以被监测和分析在真实的时间的工作流程的偏差,增加了不良的患者结果的可能性。这项研究的基本原理是,实时识别不良后果的风险状况将使医疗团队能够采取措施减少或预防医疗差错的影响。中心假设将通过追求两个特定目标进行测试:1)开发一种可扩展的自动方法,用于创建创伤复苏期间发生的活动的事件日志; 2)识别和描述团队在创伤复苏期间管理重大错误的能力。在第一个目标下,该方法将涉及(i)使用射频识别(RFID)技术和其他模式来创建人体运动和物体使用的复苏事件日志,以及(ii)将传感器日志与使用手动视频审查获得的日志进行比较(“地面实况”)。对于第二个目标,该方法将涉及基于知识的复苏工作流程模型的开发和完善,使用来自手动捕获的事件日志的活动的共识序列。这个项目是重要的,因为这些方法是一个重要的早期步骤,对计算机化的决策支持系统,可以通过监测和支持重症监护团队的工作,以改善结果的发展。拟议的研究是创新的,因为它代表了从现状的实质性偏离,重点是开发从传感器获取数据的方法,以自动跟踪多个并发活动,并检测与可变工作流程中的不良结果相关的偏差。这些方法有望成为计算机化系统的基础,用于医疗团队的实时决策支持,改善创伤复苏和其他重症监护过程中的患者结局。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RANDALL S. BURD其他文献
RANDALL S. BURD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RANDALL S. BURD', 18)}}的其他基金
Development of a Video-based Personal Protective Equipment Monitoring System
基于视频的个人防护装备监控系统的开发
- 批准号:
10585548 - 财政年份:2023
- 资助金额:
$ 42.58万 - 项目类别:
DEVELOPMENT OF A VIDEO-BASED PERSONAL PROTECTIVE EQUIPMENT MONITORING SYSTEM
基于视频的个人防护装备监控系统的开发
- 批准号:
10644164 - 财政年份:2022
- 资助金额:
$ 42.58万 - 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
- 批准号:
10386911 - 财政年份:2014
- 资助金额:
$ 42.58万 - 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
- 批准号:
10629162 - 财政年份:2014
- 资助金额:
$ 42.58万 - 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
- 批准号:
10163257 - 财政年份:2014
- 资助金额:
$ 42.58万 - 项目类别:
Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
- 批准号:
8902267 - 财政年份:2014
- 资助金额:
$ 42.58万 - 项目类别:
Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
- 批准号:
9113070 - 财政年份:2014
- 资助金额:
$ 42.58万 - 项目类别:
A Paper-Digital Interface for Time-Critical Information Management
用于时间关键信息管理的纸质数字接口
- 批准号:
8386105 - 财政年份:2012
- 资助金额:
$ 42.58万 - 项目类别:
Improving Pediatric Trauma Triage Using High Dimensional Data Analysis
使用高维数据分析改进儿科创伤分诊
- 批准号:
8111093 - 财政年份:2010
- 资助金额:
$ 42.58万 - 项目类别:
Improving Pediatric Trauma Triage Using High Dimensional Data Analysis
使用高维数据分析改进儿科创伤分诊
- 批准号:
7642839 - 财政年份:2010
- 资助金额:
$ 42.58万 - 项目类别:
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
- 批准号:
2734768 - 财政年份:2026
- 资助金额:
$ 42.58万 - 项目类别:
Studentship
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Standard Grant
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
- 批准号:
ES/Z502431/1 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Fellowship
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Fellowship
From lymphatics to evaluating resolution therapeutics in clinical trials
从淋巴管到评估临床试验中的解决疗法
- 批准号:
MR/Y013050/1 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Fellowship
Strategy for improving clinical obesity therapeutics
改善临床肥胖治疗的策略
- 批准号:
MR/Y014707/1 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Research Grant
VITAL: VIrtual Twins as tools for personalised clinicAL care
VITAL:虚拟双胞胎作为个性化临床护理的工具
- 批准号:
10106393 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
EU-Funded
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
- 批准号:
10107115 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Small Business Research Initiative
Determining the clinical utility of BioEP: a multisite, prospective, study
确定 BioEP 的临床效用:一项多中心前瞻性研究
- 批准号:
10090508 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Investment Accelerator
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
- 批准号:
10089281 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Investment Accelerator