Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes

自动工作流程捕获

基本信息

  • 批准号:
    8761390
  • 负责人:
  • 金额:
    $ 42.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Although most deviations from trauma resuscitation protocols are variations that result from the flexibility needed for managing patients with differet injuries, other deviations are "errors" that can contribute to significant adverse patient outcomes Our long-term goal is to develop computerized decision support for trauma resuscitation and other fast-paced, high-risk critical care settings that monitors workflow for deviations that are known to be associated with adverse outcomes and provides alerts to these deviations, allowing remedial actions to be taken to prevent adverse outcomes. The overall objectives for this proposal, which are the next steps in the attainment of this long-term goal, are to: (a) develop a scalable approach for recognizing activities during trauma resuscitation; and (b) identify deviations associated with adverse outcomes within the workflow of trauma resuscitation using process mining. The central hypothesis is that trauma resuscitation activities can be monitored and analyzed in real time for workflow deviations that increase the likelihood of adverse patient outcomes. The rationale for the proposed research is that real-time identification of risk conditions for adverse outcomes will allow medical teams to take measures for reducing or preventing the impact of medical errors. The central hypothesis will be tested by pursuing two specific aims: 1) develop a scalable and automatic approach for creating an event log of activities occurring during trauma resuscitation; and 2) identify and characterize the team's ability to manage major errors during trauma resuscitation. Under the first aim, the approach will involve (i) the use of radiofrequency identification (RFID) technology and other modalities to create resuscitation event logs of human movement and object use and (ii) comparisons of sensor logs with logs obtained using manual video review ("ground truth"). For the second aim, the approach will involve the development and refinement of knowledge-based resuscitation workflow models using consensus sequences of activities from manually captured event logs. This project is significant because these methods are an essential early step toward the development of computerized decision support systems that can improve outcomes by monitoring and supporting the work of critical care teams. The proposed research is innovative because it represents a substantive departure from the status quo, focusing on developing methods for obtaining data from sensors to automatically track multiple, concurrent activities and for detecting deviations associated with adverse outcomes within a variable workflow. These methods are expected to form a basis for computerized systems for real-time decision support of medical teams that improve patient outcome during trauma resuscitation and other critical care processes.
描述(申请人提供):虽然大多数创伤复苏方案的偏差是由于处理不同损伤的患者所需的灵活性造成的,但其他偏差是可能导致严重不良患者结果的“错误”。我们的长期目标是为创伤复苏和其他快节奏、高风险的重症监护环境开发计算机化的决策支持,监控已知与不良结果相关的偏差的工作流程,并对这些偏差发出警报,以便采取补救措施防止不良后果。这项提案的总体目标是:(A)制定一种可扩展的方法,以识别创伤复苏过程中的活动;(B)利用流程挖掘,查明创伤复苏工作流程中与不利结果相关的偏差。中心假设是创伤复苏活动可以实时监测和分析工作流程偏差,这些偏差增加了患者预后不良的可能性。这项拟议研究的基本原理是,实时识别不良后果的风险状况将使医疗队能够采取措施,减少或防止医疗差错的影响。核心假设将通过追求两个具体目标来检验:1)开发一种可扩展的自动方法,用于创建创伤复苏期间发生的活动的事件日志;以及2)识别和描述团队在创伤复苏期间管理重大错误的能力。根据第一个目标,该办法将涉及(1)使用射频识别(RFID)技术和其他方式创建人类活动和物体使用的复苏事件日志,以及(2)将传感器日志与使用人工视频审查(“地面真相”)获得的日志进行比较。对于第二个目标,该方法将涉及使用手动捕获的事件日志中的一致活动序列来开发和完善基于知识的复苏工作流程模型。这个项目意义重大,因为这些方法是开发计算机化决策支持系统的重要早期步骤,该系统可以通过监测和支持重症护理小组的工作来改善结果。拟议的研究具有创新性,因为它代表了对现状的实质性偏离,重点是开发从传感器获取数据的方法,以自动跟踪多个同时进行的活动,并在可变的工作流程中检测与不利结果相关的偏差。这些方法有望成为计算机化系统的基础,用于医疗队的实时决策支持,以改善创伤复苏和其他危重护理过程中的患者结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RANDALL S. BURD其他文献

RANDALL S. BURD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RANDALL S. BURD', 18)}}的其他基金

Development of a Video-based Personal Protective Equipment Monitoring System
基于视频的个人防护装备监控系统的开发
  • 批准号:
    10585548
  • 财政年份:
    2023
  • 资助金额:
    $ 42.58万
  • 项目类别:
DEVELOPMENT OF A VIDEO-BASED PERSONAL PROTECTIVE EQUIPMENT MONITORING SYSTEM
基于视频的个人防护装备监控系统的开发
  • 批准号:
    10644164
  • 财政年份:
    2022
  • 资助金额:
    $ 42.58万
  • 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
  • 批准号:
    10629162
  • 财政年份:
    2014
  • 资助金额:
    $ 42.58万
  • 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
  • 批准号:
    10386911
  • 财政年份:
    2014
  • 资助金额:
    $ 42.58万
  • 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
  • 批准号:
    10163257
  • 财政年份:
    2014
  • 资助金额:
    $ 42.58万
  • 项目类别:
Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
  • 批准号:
    8902267
  • 财政年份:
    2014
  • 资助金额:
    $ 42.58万
  • 项目类别:
Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
  • 批准号:
    9113070
  • 财政年份:
    2014
  • 资助金额:
    $ 42.58万
  • 项目类别:
A Paper-Digital Interface for Time-Critical Information Management
用于时间关键信息管理的纸质数字接口
  • 批准号:
    8386105
  • 财政年份:
    2012
  • 资助金额:
    $ 42.58万
  • 项目类别:
Improving Pediatric Trauma Triage Using High Dimensional Data Analysis
使用高维数据分析改进儿科创伤分诊
  • 批准号:
    8111093
  • 财政年份:
    2010
  • 资助金额:
    $ 42.58万
  • 项目类别:
Improving Pediatric Trauma Triage Using High Dimensional Data Analysis
使用高维数据分析改进儿科创伤分诊
  • 批准号:
    7642839
  • 财政年份:
    2010
  • 资助金额:
    $ 42.58万
  • 项目类别:

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
  • 批准号:
    2734768
  • 财政年份:
    2026
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Studentship
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
  • 批准号:
    ES/Z502431/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Fellowship
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Fellowship
From lymphatics to evaluating resolution therapeutics in clinical trials
从淋巴管到评估临床试验中的解决疗法
  • 批准号:
    MR/Y013050/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Fellowship
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
  • 批准号:
    2412195
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Standard Grant
Strategy for improving clinical obesity therapeutics
改善临床肥胖治疗的策略
  • 批准号:
    MR/Y014707/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Research Grant
Determining the clinical utility of BioEP: a multisite, prospective, study
确定 BioEP 的临床效用:一项多中心前瞻性研究
  • 批准号:
    10090508
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Investment Accelerator
VITAL: VIrtual Twins as tools for personalised clinicAL care
VITAL:虚拟双胞胎作为个性化临床护理的工具
  • 批准号:
    10106393
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    EU-Funded
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
  • 批准号:
    10107115
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Small Business Research Initiative
Novel 'extended labour induction' balloon to improve safety of labour induction: Prototype development and preliminary clinical study
新型“延长引产”球囊可提高引产安全性:原型开发和初步临床研究
  • 批准号:
    MR/Y503423/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.58万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了