Improving Pediatric Trauma Triage Using High Dimensional Data Analysis
使用高维数据分析改进儿科创伤分诊
基本信息
- 批准号:7642839
- 负责人:
- 金额:$ 26.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAccountingAdolescentAffectAgeAnatomic SitesCaringCessation of lifeCharacteristicsChildChildhoodClassificationComplexDataData AnalysesData SetDatabasesGoalsHospitalsIndividualInfantInjuryLeadMethodsModelingMorbidity - disease rateOutcomePatientsPerformancePhysiologicalProbabilityRegression AnalysisResourcesRiskSample SizeSeveritiesSystemTestingTimeTraumaTriageVehicle crashbaseclinical practicecostdata acquisitionimprovedinjuredinnovationmortalitynovelnovel strategiespediatric traumapreclinical studypredictive modelingpublic health relevanceresponseresponse to injurytrauma centers
项目摘要
DESCRIPTION (provided by applicant): Severely injured children achieve the best outcomes when treated at centers that provide specialized pediatric trauma care. Assessing the need for high-level trauma care is a complex classification problem that is affected by a very large number of potentially interacting factors (high-dimensional data), including age, mechanism of injury, known or suspected injuries and the physiological responses to injury. Despite this known complexity, approaches to pediatric trauma triage have been based on expert-derived rules, partly because of challenge of data acquisition in a prehospital setting. New approaches to data acquisition, however, are being rapidly introduced that allow access to increasing amounts of data at the injury scene and during transport, replacing the challenge of data capture with that of managing large numbers of explanatory variables. The overall goal of this project is to develop a triage system that increases the likelihood that injured children are treated at hospitals with the capability of optimizing outcome after injury. The purpose of this proposal is to develop more accurate methods for predicting the outcome and resource needs of injured children based on data available in prehospital and emergency department settings. We hypothesize that the relationship between observable prehospital and early hospital features (patient characteristics, physiologic status, anatomic sites of injury, mechanism of injury and prehospital treatments) and the need for and level of care required for injured children is highly complex, requiring approaches for modeling high-dimensional data to achieve accurate prediction. This hypothesis will be tested in two aims: 1. compare the impact of low- and high-dimensional data on the performance of models predicting time-dependent outcomes and resource utilization after pediatric injury; 2. build high-dimensional multivariate probability models that predict outcomes after pediatric injury using data from individual injury datasets and integrated data from heterogeneous injury datasets. The hypothesis to be tested under Aim 1 is that prediction of time-dependent outcomes and resource utilization after pediatric injury will be improved by modeling high-dimensional data. Aim 1 will be pursued using data obtained from two national trauma databases to develop and compare models based on low- and high-dimensional data. This aim will require extending our innovative approach to high-dimensional regression analysis to handle time- dependent response variables and competing risks. The hypothesis to be tested under Aim 2 is that prediction of outcomes after pediatric injury will be improved using integrated data obtained from heterogeneous injury datasets. Aim 2 will be pursued using a motor vehicle crash dataset and a trauma database to develop multivariate probability models based on data from each dataset and integrated data from both datasets. This aim will require developing novel approaches for building Bayesian graphical models from distributed high- dimensional data. This proposal will bridge gaps in our understanding of the impact of domain complexity on the accuracy of prediction in prehospital and emergency department settings.
PUBLIC HEALTH RELEVANCE: Severely injured children achieve the best outcomes when treated at hospitals that provide specialized pediatric trauma care. Determining the need for high-level pediatric trauma care is a complex classification problem that is influenced by a very large number of potentially interacting factors, including age, mechanism of injury, known or suspected injuries and the physiological responses to injury. In this proposal, novel statistical approaches that account for this complexity will be developed for more accurately predicting the need for high-level pediatric trauma care among injured children.
描述(由申请人提供):严重受伤的儿童在提供专门的儿科创伤护理的中心接受治疗时可以获得最佳结果。评估高水平创伤护理的需求是一个复杂的分类问题,受到大量潜在相互作用因素(高维数据)的影响,包括年龄、损伤机制、已知或疑似损伤以及对损伤的生理反应。尽管存在这种已知的复杂性,儿科创伤分类方法仍然基于专家得出的规则,部分原因是院前环境中数据采集的挑战。然而,新的数据采集方法正在迅速推出,允许在受伤现场和运输过程中获取越来越多的数据,用管理大量解释变量的挑战取代数据采集的挑战。该项目的总体目标是开发一个分诊系统,增加受伤儿童在医院接受治疗的可能性,并能够优化受伤后的结果。该提案的目的是根据院前和急诊室的可用数据,开发更准确的方法来预测受伤儿童的结果和资源需求。我们假设可观察到的院前和早期医院特征(患者特征、生理状态、损伤解剖部位、损伤机制和院前治疗)与受伤儿童的护理需求和护理水平之间的关系非常复杂,需要对高维数据进行建模的方法才能实现准确的预测。该假设将在两个目标上进行检验: 1. 比较低维和高维数据对预测儿科损伤后时间依赖性结果和资源利用的模型性能的影响; 2. 建立高维多元概率模型,使用来自个体损伤数据集的数据和来自异构损伤数据集的集成数据来预测儿科损伤后的结果。目标 1 下要测试的假设是,通过对高维数据建模,可以改进对儿科损伤后时间依赖性结果和资源利用的预测。目标 1 将使用从两个国家创伤数据库获得的数据来开发和比较基于低维和高维数据的模型。这一目标需要将我们的创新方法扩展到高维回归分析,以处理时间相关的响应变量和竞争风险。目标 2 下要测试的假设是,使用从异构损伤数据集中获得的综合数据将改进对儿科损伤后结果的预测。将使用机动车辆碰撞数据集和创伤数据库来实现目标 2,以开发基于每个数据集的数据和两个数据集的集成数据的多元概率模型。这一目标需要开发新的方法来从分布式高维数据构建贝叶斯图形模型。该提案将弥补我们对域复杂性对院前和急诊科环境中预测准确性影响的理解上的差距。
公共卫生相关性:严重受伤的儿童在提供专门的儿科创伤护理的医院接受治疗时可以获得最佳结果。确定高水平儿科创伤护理的需求是一个复杂的分类问题,受到大量潜在相互作用因素的影响,包括年龄、损伤机制、已知或疑似损伤以及对损伤的生理反应。在该提案中,将开发考虑这种复杂性的新统计方法,以更准确地预测受伤儿童对高水平儿科创伤护理的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RANDALL S. BURD其他文献
RANDALL S. BURD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RANDALL S. BURD', 18)}}的其他基金
Development of a Video-based Personal Protective Equipment Monitoring System
基于视频的个人防护装备监控系统的开发
- 批准号:
10585548 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
DEVELOPMENT OF A VIDEO-BASED PERSONAL PROTECTIVE EQUIPMENT MONITORING SYSTEM
基于视频的个人防护装备监控系统的开发
- 批准号:
10644164 - 财政年份:2022
- 资助金额:
$ 26.14万 - 项目类别:
Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
- 批准号:
8761390 - 财政年份:2014
- 资助金额:
$ 26.14万 - 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
- 批准号:
10629162 - 财政年份:2014
- 资助金额:
$ 26.14万 - 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
- 批准号:
10386911 - 财政年份:2014
- 资助金额:
$ 26.14万 - 项目类别:
Intention-aware Recommender System for Improving Trauma Resuscitation Outcomes
用于改善创伤复苏结果的意图感知推荐系统
- 批准号:
10163257 - 财政年份:2014
- 资助金额:
$ 26.14万 - 项目类别:
Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
- 批准号:
8902267 - 财政年份:2014
- 资助金额:
$ 26.14万 - 项目类别:
Automatic Workflow Capture & Analysis for Improving Trauma Resuscitation Outcomes
自动工作流程捕获
- 批准号:
9113070 - 财政年份:2014
- 资助金额:
$ 26.14万 - 项目类别:
A Paper-Digital Interface for Time-Critical Information Management
用于时间关键信息管理的纸质数字接口
- 批准号:
8386105 - 财政年份:2012
- 资助金额:
$ 26.14万 - 项目类别:
Improving Pediatric Trauma Triage Using High Dimensional Data Analysis
使用高维数据分析改进儿科创伤分诊
- 批准号:
8111093 - 财政年份:2010
- 资助金额:
$ 26.14万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 26.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 26.14万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 26.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 26.14万 - 项目类别:














{{item.name}}会员




