Asthma ascertainment and characterization through electronic health records

通过电子健康记录确定和表征哮喘

基本信息

  • 批准号:
    8853379
  • 负责人:
  • 金额:
    $ 38.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-01 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Asthma is the most common chronic condition in children and one of the five most burdensome disease in the United States. Despite this, epidemiologic investigations into childhood asthma are limited by variations in asthma diagnosis across sites and inefficient utilization of electronic medical records (EMRs) to facilitate large- scale studies. Algorithms based on structured data (e.g., ICD-9 codes) have shown strong specificity, but lack the sensitivity required for population-based studies for asthma. Manual EMR reviews allow application of well- recognized criteria-based definitions such as the Asthma Predictive Index (API) or the Predetermined Asthma Criteria (PAC), but are labor-intensive and expensive, and therefore not feasible for population-level studies. Because of the lack of consistent, reproducible, and efficient asthma ascertainment methods, the use of inconsistent a. asthma criteria, b. ascertainment processes, and c. sampling frames results in inconsistent asthma cohorts and study results for clinical trials or other studies. This inconsistency causes confusion, delayed translation of important study findings into clinical practice, and may obscure the true heterogeneity of asthma. Our long-term goal is to advance research and clinical care for asthma, by developing a robust software tool to streamline the process of automatic medical record ascertainment of asthma based on the asthma criteria (PAC and API). We propose to augment traditional structured data criteria with natural language processing (NLP) techniques to account for unstructured text. Thus, the main goal of this proposal is to develop NLP-API, an NLP algorithm for automating API, and apply the NLP algorithms for both PAC and API to identify a cohort of children with asthma. In addition, we will use the tools to characterize children with asthma thereby demonstrating its usefulness in epidemiological investigations and also possibly in asthma management. We hypothesize that asthma criteria-based NLP algorithms applied to the EMR will allow us to identify and characterize asthma status accurately, consistently, and efficiently. In Aim 1, we will develop NLP-API, an NLP algorithm for API. In Aim 2, we will apply both NLP-API (developed under Aim 1) and NLP-PAC (our recently developed PAC-based NLP algorithm) to two evaluation cohorts. In Aim 3, we will characterize the subgroups of children with asthma identified under Aim 2 by assessing the association of NLP-ascertained asthma status with lung function and biomarkers for asthma. The expected outcomes of the proposed study are: (i) enhanced research capabilities for asthma by enabling more consistent, reproducible, and efficient large-scale asthma ascertainment, sampling frames, and timing estimations; (ii) a basis for improving timely asthma diagnosis and care through clinical decision support systems; and (iii) advancement of the use of NLP techniques for clinical studies. Successful completion of this project will provide an accurate, consistent, and efficient tool for addressing the significant burden of asthma in children and a framework for extension to other chronic diseases and adults.
 描述(申请人提供):哮喘是儿童中最常见的慢性疾病,也是美国五大负担最重的疾病之一。尽管如此,儿童哮喘的流行病学调查受到不同地点哮喘诊断的差异以及电子病历(EMR)的低效利用以促进大规模研究的限制。基于结构化数据(如ICD-9代码)的算法已显示出很强的特异性,但缺乏基于人群的哮喘研究所需的敏感性。手动EMR审查允许应用公认的基于标准的定义,如哮喘预测指数(API)或预先确定的哮喘标准(PAC),但这是劳动密集型和昂贵的,因此不适用于人口水平的研究。由于缺乏一致的、可重复的和有效的哮喘确定方法,使用不一致的哮喘标准、B.确定过程和C.采样框架会导致临床试验或其他研究的哮喘队列和研究结果不一致。这种不一致会导致混淆,延迟将重要的研究结果转化为临床实践,并可能掩盖哮喘的真正异质性。我们的长期目标是通过开发一个强大的软件工具来简化基于哮喘标准(PAC和API)的哮喘自动病历确定过程,从而推动哮喘的研究和临床护理。我们建议使用自然语言处理(NLP)技术来增强传统的结构化数据标准,以说明非结构化文本。因此,这项提议的主要目标是开发NLP-API,一种用于自动化API的NLP算法,并应用PAC和API的NLP算法来识别哮喘儿童队列。此外,我们将使用这些工具来确定患有哮喘的儿童的特征,从而证明其在流行病学调查以及可能在哮喘管理中的作用。我们假设,将基于哮喘标准的NLP算法应用于EMR将使我们能够准确、一致和高效地识别和描述哮喘状态。在目标1中,我们将开发一个针对API的NLP算法NLP-API。在目标2中,我们将同时将NLP-API(在AIM 1下开发)和NLP-PAC(我们最近开发的基于PAC的NLP算法)应用于两个评估队列。在目标3中,我们将通过评估NLP确定的哮喘状态与肺功能和哮喘生物标志物的关系来表征目标2中确定的哮喘儿童的亚组。拟议研究的预期结果是:(I)通过实现更一致、可重复和更有效的大规模哮喘确定、采样框架和时间估计,增强哮喘的研究能力;(Ii)通过临床决策支持系统,为改进哮喘的及时诊断和护理奠定基础;以及(Iii)促进临床研究中NLP技术的使用。该项目的成功完成将为解决儿童哮喘的重大负担提供一个准确、一致和有效的工具,并为推广到其他慢性病和成人提供一个框架。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOUNG J JUHN其他文献

YOUNG J JUHN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOUNG J JUHN', 18)}}的其他基金

Improving the Risk Adjustment Method for Quality Care Measures through Application of an Innovative Individual-Level Socioeconomic Measure
通过应用创新的个人层面的社会经济措施,改进优质护理措施的风险调整方法
  • 批准号:
    10213256
  • 财政年份:
    2021
  • 资助金额:
    $ 38.89万
  • 项目类别:
Improving the Risk Adjustment Method for Quality Care Measures through Application of an Innovative Individual-Level Socioeconomic Measure
通过应用创新的个人层面的社会经济措施,改进优质护理措施的风险调整方法
  • 批准号:
    10394328
  • 财政年份:
    2021
  • 资助金额:
    $ 38.89万
  • 项目类别:
Asthma ascertainment and characterization through electronic health records
通过电子健康记录确定和表征哮喘
  • 批准号:
    9032521
  • 财政年份:
    2015
  • 资助金额:
    $ 38.89万
  • 项目类别:
Identification and characterization of children with asthma-associated comorbidities through computational and immune phenotyping
通过计算和免疫表型分析患有哮喘相关合并症的儿童的识别和特征分析
  • 批准号:
    10337267
  • 财政年份:
    2015
  • 资助金额:
    $ 38.89万
  • 项目类别:
Enhanced Ascertainment of Asthma Status Via Natural Language Processing
通过自然语言处理增强哮喘状态的确定
  • 批准号:
    8995191
  • 财政年份:
    2015
  • 资助金额:
    $ 38.89万
  • 项目类别:
Enhanced Ascertainment of Asthma Status Via Natural Language Processing
通过自然语言处理增强哮喘状态的确定
  • 批准号:
    8860691
  • 财政年份:
    2015
  • 资助金额:
    $ 38.89万
  • 项目类别:
Risk of Herpes Zoster Among Adults with Asthma
成人哮喘患者患带状疱疹的风险
  • 批准号:
    8495928
  • 财政年份:
    2012
  • 资助金额:
    $ 38.89万
  • 项目类别:
Risk of Herpes Zoster Among Adults with Asthma
成人哮喘患者患带状疱疹的风险
  • 批准号:
    8346055
  • 财政年份:
    2012
  • 资助金额:
    $ 38.89万
  • 项目类别:
Individual Housing Data and Socioeconomic Status
个人住房数据和社会经济状况
  • 批准号:
    7229827
  • 财政年份:
    2006
  • 资助金额:
    $ 38.89万
  • 项目类别:
Individual Housing Data and Socioeconomic Status
个人住房数据和社会经济状况
  • 批准号:
    7015211
  • 财政年份:
    2006
  • 资助金额:
    $ 38.89万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 38.89万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.89万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 38.89万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.89万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 38.89万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 38.89万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.89万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 38.89万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 38.89万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.89万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了