Enhanced Ascertainment of Asthma Status Via Natural Language Processing
通过自然语言处理增强哮喘状态的确定
基本信息
- 批准号:8995191
- 负责人:
- 金额:$ 23.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-15 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAmericanAsthmaAtopic DermatitisCaringChildChronicChronic DiseaseClassificationClinicalClinical ResearchCodeComputerized Medical RecordDataData SetData SourcesDiagnosisDiseaseDisease ProgressionDisease remissionEpidemiologic StudiesEpidemiologyEthnic OriginEventFutureGenerationsGoalsGoldHealthICD-9InfectionInstitutionInvestigationLogicMachine LearningManualsMedical RecordsMethodsNatural HistoryNatural Language ProcessingOutcomePatient CarePatientsPopulationPredictive ValuePublic HealthReadingRelapseReportingResearchRiskSensitivity and SpecificitySpecificityStructureSystemTechniquesTestingTextTimeTimeLineWorkbaseclinical Diagnosisclinical careclinical practicecohortimprovedlearning strategyopen sourcepopulation basedpopulation healthresponsetool
项目摘要
DESCRIPTION (provided by applicant): It is estimated that almost one-half of Americans suffer from chronic diseases, yet epidemiologic investigations are limited by the difficulty of ascertaining disease status at scale, even in the era of electronic medical records (EMRs). For example, algorithms based on structured data (e.g., ICD-9 codes) for asthma lack the sensitivity required for population-based studies, while manual medical record reviews of EMRs are labor-intensive and thus inefficient for population-scale ascertainment of disease status. The lack of efficient ways to ascertain disease status has severely restricted the scope of investigation for chronic diseases such as asthma. Furthermore, there is a temporal progression of a patient's true disease status, and this may not be reflected in the clinical diagnosis of that disease. We previously reported that two-thirds of children with asthma had a delay in their diagnosis (median: 3.3 years), with subsequent conditions like remission or relapse largely unreported. Such information about disease progression may be recorded during manual medical record review, but, again, manual review limits investigations and conclusions to small-scale studies. Our long term goal is to accelerate epidemiological investigations of chronic diseases and their temporal progression by streamlining medical record review. The main goal of this proposal is to extend a preliminary NLP-based system for asthma status ascertainment by identifying time-situated classifications of asthma onset, remission, and relapse. We will validate this system in a population health setting and release it as an open-source tool. We hypothesize that NLP methods in the EMR allow us to ascertain asthma status and to track asthma disease progression with greater accuracy and efficiency than conventional approaches (billing codes or manual medical record review). In Aim 1, we will extend our preliminary NLP system to ascertain the patient-level disease progression of asthma. Most significantly, we will ascertain time-situated asthma remission and relapse, two important events in the natural history of asthma. We will also improve methods of aggregating events, employ temporal expression and relation extraction, include structured data sources, and implement automatic feature selection. In Aim 2, we will evaluate the NLP system for its accuracy in ascertaining asthma onset, relapse, and remission. We will also verify the epidemiological (construct) validity against existing studies, and disseminate the NLP system as an open-source project, Adept (Aggregation of Disease Evidence for Patient Timelines). Expected Outcomes: The proposed NLP system will: (i) orient clinical NLP techniques toward time-situated patient-level solutions; (ii) expand the scale of research capabilities for asthma; and (iii) provide a basis for decision support and other applications. Successful completion of this project would provide an open-source tool for ascertaining the disease progression of asthma with a general approach to aggregating evidence.
描述(申请人提供):据估计,近一半的美国人患有慢性病,但即使在电子病历(EMR)时代,流行病学调查也因难以大规模确定疾病状况而受到限制。例如,基于哮喘结构化数据(例如 ICD-9 代码)的算法缺乏基于人群的研究所需的敏感性,而 EMR 的手动医疗记录审查是劳动密集型的,因此对于人群规模的疾病状态查明效率低下。缺乏确定疾病状态的有效方法严重限制了哮喘等慢性病的调查范围。此外,患者的真实疾病状态存在时间进展,这可能无法反映在该疾病的临床诊断中。我们之前报道过,三分之二的哮喘儿童的诊断延迟(中位数:3.3 年),随后的病情缓解或复发等情况基本上没有报告。有关疾病进展的此类信息可能会在手动病历审查期间记录,但手动审查再次将调查和结论限制于小规模研究。我们的长期目标是通过简化病历审查来加速慢性病及其时间进展的流行病学调查。该提案的主要目标是通过确定哮喘发作、缓解和复发的时间分类来扩展基于 NLP 的初步哮喘状态确定系统。我们将在人口健康环境中验证该系统并将其作为开源工具发布。我们假设 EMR 中的 NLP 方法使我们能够比传统方法(账单代码或手动病历审核)更准确、更高效地确定哮喘状态并跟踪哮喘疾病进展。在目标 1 中,我们将扩展我们的初步 NLP 系统,以确定哮喘患者的疾病进展。最重要的是,我们将确定哮喘缓解和复发的时间定位,这是哮喘自然史中的两个重要事件。我们还将改进聚合事件的方法,采用时间表达和关系提取,包括结构化数据源,并实现自动特征选择。在目标 2 中,我们将评估 NLP 系统在确定哮喘发作、复发和缓解方面的准确性。我们还将根据现有研究验证流行病学(构建)有效性,并将 NLP 系统作为开源项目 Adept(患者时间线疾病证据聚合)进行传播。预期成果:拟议的 NLP 系统将:(i)将临床 NLP 技术定位于特定时间的患者级解决方案; (ii) 扩大哮喘研究能力的规模; (iii) 为决策支持和其他应用提供基础。该项目的成功完成将为通过收集证据的通用方法来确定哮喘疾病进展提供一个开源工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOUNG J JUHN其他文献
YOUNG J JUHN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOUNG J JUHN', 18)}}的其他基金
Improving the Risk Adjustment Method for Quality Care Measures through Application of an Innovative Individual-Level Socioeconomic Measure
通过应用创新的个人层面的社会经济措施,改进优质护理措施的风险调整方法
- 批准号:
10213256 - 财政年份:2021
- 资助金额:
$ 23.85万 - 项目类别:
Improving the Risk Adjustment Method for Quality Care Measures through Application of an Innovative Individual-Level Socioeconomic Measure
通过应用创新的个人层面的社会经济措施,改进优质护理措施的风险调整方法
- 批准号:
10394328 - 财政年份:2021
- 资助金额:
$ 23.85万 - 项目类别:
Asthma ascertainment and characterization through electronic health records
通过电子健康记录确定和表征哮喘
- 批准号:
9032521 - 财政年份:2015
- 资助金额:
$ 23.85万 - 项目类别:
Identification and characterization of children with asthma-associated comorbidities through computational and immune phenotyping
通过计算和免疫表型分析患有哮喘相关合并症的儿童的识别和特征分析
- 批准号:
10337267 - 财政年份:2015
- 资助金额:
$ 23.85万 - 项目类别:
Asthma ascertainment and characterization through electronic health records
通过电子健康记录确定和表征哮喘
- 批准号:
8853379 - 财政年份:2015
- 资助金额:
$ 23.85万 - 项目类别:
Enhanced Ascertainment of Asthma Status Via Natural Language Processing
通过自然语言处理增强哮喘状态的确定
- 批准号:
8860691 - 财政年份:2015
- 资助金额:
$ 23.85万 - 项目类别:
Risk of Herpes Zoster Among Adults with Asthma
成人哮喘患者患带状疱疹的风险
- 批准号:
8495928 - 财政年份:2012
- 资助金额:
$ 23.85万 - 项目类别:
Risk of Herpes Zoster Among Adults with Asthma
成人哮喘患者患带状疱疹的风险
- 批准号:
8346055 - 财政年份:2012
- 资助金额:
$ 23.85万 - 项目类别:
Individual Housing Data and Socioeconomic Status
个人住房数据和社会经济状况
- 批准号:
7229827 - 财政年份:2006
- 资助金额:
$ 23.85万 - 项目类别:
Individual Housing Data and Socioeconomic Status
个人住房数据和社会经济状况
- 批准号:
7015211 - 财政年份:2006
- 资助金额:
$ 23.85万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.85万 - 项目类别:
Research Grant