A Structural Systems Biology Approach to Drug Discovery
药物发现的结构系统生物学方法
基本信息
- 批准号:8798517
- 负责人:
- 金额:$ 62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsBindingBiologyBiomedical ResearchCommunitiesComputer AssistedComputing MethodologiesDiseaseDrug DesignDrug TargetingFree EnergyInvestigationLengthLigand BindingLigandsMethodologyMethodsPathway interactionsPharmaceutical PreparationsPhysicsRNA-Binding ProteinsSystemSystems BiologyTechniquesTherapeuticTimeVisionWorkabstractingbasecomplex biological systemscomputer studiesdesigndrug discoveryflexibilityfrontierglobal healthnovelnovel strategiespublic health relevancereceptortool
项目摘要
DESCRIPTION (Provided by the applicant)
Abstract: With petascale computing power on the immediate horizon, computational studies have the opportunity to make unprecedented contributions to drug discovery efforts. Although ligand flexibility is routinely accounted for in computer-aided drug design (CADD) methodologies, incorporating receptor flexibility and system complexity remains an important challenge. The next frontier in flexible receptor methodologies is the integration of cutting-edge physics-based computational methods into the CADD techniques, in conjunction with the use of more complex biological systems. The incorporation of powerful new predictive theoretical tools into flexible receptor methodologies for ligand discovery and design will provide an important shift to the CADD field, enabling the discovery of novel ligand-binding modes and expediting the estimation of more accurate ligand free energies of binding. My vision is to drive the computer-aided drug design field towards a systems biology approach, where multiple proteins, and the RNAs they bind, are targeted - thus challenging the "one-target, one- disease, one-drug" paradigm. The new approaches I envision will integrate multiple time and length scales and take explicit advantage of the new structural information yielded by these algorithms. These investigations will push important frontiers in our understanding of biology, ultimately opening new pathways to more effective therapeutics.
描述(由申请人提供)
摘要:随着千万亿次计算能力的出现,计算研究有机会为药物发现工作做出前所未有的贡献。虽然配体的灵活性通常占计算机辅助药物设计(CADD)方法,结合受体的灵活性和系统的复杂性仍然是一个重要的挑战。灵活受体方法学的下一个前沿是将尖端的基于物理学的计算方法整合到CADD技术中,并结合使用更复杂的生物系统。将强大的新的预测理论工具结合到灵活的受体方法中,用于配体的发现和设计,将为CADD领域提供重要的转变,从而能够发现新的配体结合模式,并加快估计更准确的配体结合自由能。我的愿景是将计算机辅助药物设计领域推向系统生物学方法,其中多个蛋白质及其结合的RNA被靶向-从而挑战“一个靶标,一种疾病,一种药物”的范式。我设想的新方法将整合多个时间和长度尺度,并明确利用这些算法产生的新结构信息。这些研究将推动我们对生物学理解的重要前沿,最终为更有效的治疗开辟新途径。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling the pharmacodynamics of passive membrane permeability.
- DOI:10.1007/s10822-011-9480-7
- 发表时间:2011-11
- 期刊:
- 影响因子:3.5
- 作者:Swift, Robert V.;Amaro, Rommie E.
- 通讯作者:Amaro, Rommie E.
Weighted Implementation of Suboptimal Paths (WISP): An Optimized Algorithm and Tool for Dynamical Network Analysis.
- DOI:10.1021/ct4008603
- 发表时间:2014-02-11
- 期刊:
- 影响因子:5.5
- 作者:Van Wart, Adam T.;Durrant, Jacob;Votapka, Lane;Amaro, Rommie E.
- 通讯作者:Amaro, Rommie E.
Multistructural hot spot characterization with FTProd.
使用 FTProd 进行多结构热点表征。
- DOI:10.1093/bioinformatics/bts689
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Votapka,Lane;Amaro,RommieE
- 通讯作者:Amaro,RommieE
Magnesium-induced nucleophile activation in the guanylyltransferase mRNA capping enzyme.
- DOI:10.1021/bi301224b
- 发表时间:2012-12-21
- 期刊:
- 影响因子:2.9
- 作者:Swift RV;Ong CD;Amaro RE
- 通讯作者:Amaro RE
Rational prediction with molecular dynamics for hit identification.
- DOI:10.2174/156802612804910313
- 发表时间:2012
- 期刊:
- 影响因子:3.4
- 作者:Nichols SE;Swift RV;Amaro RE
- 通讯作者:Amaro RE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rommie E Amaro其他文献
Rommie E Amaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rommie E Amaro', 18)}}的其他基金
A MULTISCALE APPROACH TO TARGET THE ACHILLES HEEL OF P53 CANCER MUTANTS
针对 P53 癌症突变体致命弱点的多尺度方法
- 批准号:
10391499 - 财政年份:2019
- 资助金额:
$ 62万 - 项目类别:
A MULTISCALE APPROACH TO TARGET THE ACHILLES HEEL OF P53 CANCER MUTANTS
针对 P53 癌症突变体致命弱点的多尺度方法
- 批准号:
9906241 - 财政年份:2019
- 资助金额:
$ 62万 - 项目类别:
AN OPEN RESOURCE TO ADVANCE COMPUTER-AIDED DRUG DESIGN
推进计算机辅助药物设计的开放资源
- 批准号:
8756082 - 财政年份:2014
- 资助金额:
$ 62万 - 项目类别:
Towards a Structural Systems Biology Approach for Anti-Trypanosomal Therapeutics
抗锥虫治疗的结构系统生物学方法
- 批准号:
7791099 - 财政年份:2010
- 资助金额:
$ 62万 - 项目类别:
Towards a Structural Systems Biology Approach for Anti-Trypanosomal Therapeutics
抗锥虫治疗的结构系统生物学方法
- 批准号:
8122149 - 财政年份:2010
- 资助金额:
$ 62万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 62万 - 项目类别:
Research Grant














{{item.name}}会员




