How does the brain solve the pattern recognition problem?
大脑如何解决模式识别问题?
基本信息
- 批准号:8755764
- 负责人:
- 金额:$ 243万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcousticsAreaAuditoryBehavioral AssayBiological ModelsBiological Neural NetworksBrainCentral Auditory Processing DisorderCommunicationComplexComputer SimulationComputersDiseaseDrosophila genusEnvironmentEquilibriumFaceGoalsHumanIndividualInjuryMapsMemoryMethodsMotor outputNatureNervous system structureNeurodegenerative DisordersNeuronsNoiseOdorsOutputPatientsPatternPattern RecognitionPerceptionProblem SolvingProcessProsthesisResearchSensorySignal TransductionSolutionsSpeechStrokeSystemTaste PerceptionTestingVisual Agnosiasabstractingauditory pathwayautism spectrum disorderbasedesigndriving behaviorflyneural circuitneural prosthesisphrasesprogramspublic health relevancerelating to nervous systemresearch studyresponse
项目摘要
Abstract
The ability to recognize complex patterns in nature is typically effortless for the human brain. For example,
healthy humans can easily recognize faces, complex odor mixtures and tastes, and words and sentences,
even when the patterns are corrupted by noise or occur in different contexts. Pattern recognition is not only
essential for communication and interacting with the environment, it is also key to memory formation. However,
the underlying mechanisms involved remain mysterious. We do not yet have a complete solution for how any
brain (of any model system, large or small) solves this problem, and programming a computer to accomplish
the feats of pattern recognition that humans are capable of is still an active area of research. This presents a
major roadblock towards treating the large number of individuals with various pattern recognition deficits (e.g.,
patients suffering from central auditory processing disorder, visual agnosia, autism spectrum disorder, various
neurodegenerative diseases, or a recent stroke). Here we propose to find a solution to this problem in a brain
capable of pattern recognition, but with orders of magnitude fewer neurons than most mammalian brains. My
lab has recently demonstrated, using quantitative behavioral assays, computational modeling, and neural
circuit manipulations, that flies can both produce and detect dynamic acoustic patterns that vary over multiple
timescales. Moreover, we have uniquely pioneered methods to functionally characterize neurons of the
acoustic communication system of Drosophila, from sensory inputs all the way to motor outputs. Building on
these achievements, we now propose a strategy for recording from the complete set of input and output
neurons of the network(s) underlying acoustic pattern recognition in this model system, and for mapping the
underlying connections. To do this, we focus on testing two prominent hypotheses (posited across model
systems) for how the brain accomplishes song pattern recognition. The first experiments test the hypothesis
that a precise balance of excitation and inhibition within the auditory pathway, ultimately generating sparse and
selective responses, is required for temporal feature selectivity and song pattern recognition. The second
experiments test the hypothesis that song pattern recognition relies on template matching, or a neural network
that compares the incoming auditory signal to an internal representation of a particular pattern. The ultimate
goal of this line of research is to inspire the design of simple (based on few neurons) neural prosthetic devices
to restore or supplement brain function lost during disease or injury. Because patterns in fly song and human
speech vary over similar timescales, neural computations for recognizing song patterns in Drosophila should
be informative for solving pattern recognition in more complex systems. More broadly, our results will
contribute to a deeper understanding of how nervous systems process auditory and species-specific
information, and have the potential to transform our understanding of how nervous systems produce sensory-
driven behaviors.
摘要
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensorimotor Transformations Underlying Variability in Song Intensity during Drosophila Courtship.
- DOI:10.1016/j.neuron.2015.12.035
- 发表时间:2016-02-03
- 期刊:
- 影响因子:16.2
- 作者:Coen, Philip;Xie, Marjorie;Clemens, Jan;Murthy, Mala
- 通讯作者:Murthy, Mala
Quantifying behavior to solve sensorimotor transformations: advances from worms and flies.
- DOI:10.1016/j.conb.2017.08.006
- 发表时间:2017-10
- 期刊:
- 影响因子:5.7
- 作者:Calhoun AJ;Murthy M
- 通讯作者:Murthy M
Experimental and statistical reevaluation provides no evidence for Drosophila courtship song rhythms.
实验和统计重新评估没有提供果蝇求爱歌曲节奏的证据。
- DOI:10.1073/pnas.1707471114
- 发表时间:2017
- 期刊:
- 影响因子:11.1
- 作者:Stern,DavidL;Clemens,Jan;Coen,Philip;Calhoun,AdamJ;Hogenesch,JohnB;Arthur,BenJ;Murthy,Mala
- 通讯作者:Murthy,Mala
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mala Murthy其他文献
Mala Murthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mala Murthy', 18)}}的其他基金
Accelerating connectomic proofreading for larger brains and multiple individuals
加速更大大脑和多个个体的连接组学校对
- 批准号:
10413515 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Dissemination of FlyWire, A Whole-Brain Connectomics Resource
全脑连接组学资源 FlyWire 的传播
- 批准号:
10439970 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Dissemination of FlyWire, A Whole-Brain Connectomics Resource
全脑连接组学资源 FlyWire 的传播
- 批准号:
10668452 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Uncovering the Neural Mechanisms that Flexibly Link Sensory Processing to Behavior
揭示将感觉处理与行为灵活联系起来的神经机制
- 批准号:
10396643 - 财政年份:2019
- 资助金额:
$ 243万 - 项目类别:
Uncovering the Neural Mechanisms that Flexibly Link Sensory Processing to Behavior
揭示将感觉处理与行为灵活联系起来的神经机制
- 批准号:
9924657 - 财政年份:2019
- 资助金额:
$ 243万 - 项目类别:
Uncovering the Neural Mechanisms that Flexibly Link Sensory Processing to Behavior
揭示将感觉处理与行为灵活联系起来的神经机制
- 批准号:
10630079 - 财政年份:2019
- 资助金额:
$ 243万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Standard Grant














{{item.name}}会员




