Increasing the power of GxE detection by using multi-locus genome-wide predictors
通过使用多位点全基因组预测因子提高 GxE 检测的能力
基本信息
- 批准号:8806011
- 负责人:
- 金额:$ 15.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingBioinformaticsBlood PressureBody mass indexCardiovascular DiseasesCohort StudiesComplexDataData SetDepositionDetectionDiseaseDocumentationEnvironmentEnvironmental ExposureEnvironmental HealthEnvironmental Risk FactorEpidemiologyEtiologyGenesGeneticGenetic RiskGenomeGenomicsGenotypeGoalsHeritabilityHumanHuman GeneticsIndividualInformaticsInheritedInternationalInvestigationLeadLinear ModelsMeasurementMethodsNon-Insulin-Dependent Diabetes MellitusPolygenic TraitsPopulationQuantitative GeneticsResearch DesignResearch PersonnelRisk FactorsRoleSample SizeSingle Nucleotide PolymorphismTestingVariantWorkanalytical methodburden of illnesscohortdatabase of Genotypes and Phenotypesdisorder riskgene environment interactiongenome wide association studygenome-widehuman diseaseimprovednovelpublic health prioritiespublic health relevancestandardize measuretrait
项目摘要
DESCRIPTION (provided by applicant): It is intuitive that the genetic risk for human disease depends on the environment, or that the effect of an exposure in disease is not identical across human populations of different genetic backgrounds. This concept is known as "gene-by-environment" interaction (GxE) and it is hypothesized that disease risk can be better explained by identifying GxE. Despite the importance in understanding GxE in human disease, there have been few studies that have documented the concept. There are a number of explanations for few-recorded GxE. First, there a few ways to measure standardized indicators of the environment (unlike single nucleotide polymorphisms [SNPs]). When GxE are investigated, environmental factors are selected without sufficient evidence of their prior association in disease traits. Second, investigating GxE requires large sample sizes to identify interactions between individual SNPs and environmental factors. The problem is exacerbated when accounting for multiple tests of millions of SNPs with small main effects. Using current day methods and unstandardized environmental data, it is difficult to collect evidence for interactions
between millions of specific SNPs and environmental factors. It is now possible to detect GxE in complex disease traits that contribute to significant disease burden, such as body mass index (BMI) and blood pressure (BP), by developing new methods in quantitative genetics and leveraging existing methods in environmental exposure bioinformatics. This project has four aims to achieve this goal. First, the investigators will develop and validate genome-wide polygenic prediction scores to summarize the contribution of all common SNPs in BMI and BP. The investigators will develop and validate the scores in preexisting genome-wide association study (GWAS) consortia data. In the second aim, the investigators will standardize environmental variables from 7 independent cohort studies deposited in the Database of Genotypes and Phenotypes (dbGaP) to build a large cohort of N ~ 30K for GxE testing. Third, the investigators will develop methods to detect and validate GxE between polygenic trait scores and specific environmental factors selected from Environment-Wide Association Studies (EWAS) in BMI and BP with the combined dbGaP cohorts. Fourth, the investigators will estimate the proportion of variation in BMI and BP due to GxE interaction. The methods proposed in the R21 provide a new paradigm for GxE estimation by taking advantage of all SNPs on the genome while considering a larger number of environmental factors with robust support from EWAS. This will lead to a more complete picture of variability ascribed to genes and environment in complex traits of highest disease burden. If successful, the methods will enable the rapid documentation of reproducible GxE, a need in the human genetics and environmental health fields.
描述(由申请人提供):人类疾病的遗传风险取决于环境,或者疾病暴露的影响在不同遗传背景的人群中是不相同的,这是直观的。这个概念被称为“基因-环境”相互作用(GxE),假设通过识别GxE可以更好地解释疾病风险。尽管了解GxE在人类疾病中的重要性,但很少有研究记录了这一概念。对于很少记录的GxE,有很多解释。首先,有几种方法可以测量环境的标准化指标(不像单核苷酸多态性[SNPs])。在研究GxE时,环境因素的选择没有充分的证据表明它们与疾病性状的先验关联。其次,研究GxE需要大量的样本来确定单个snp与环境因素之间的相互作用。当考虑到对数百万个主效应较小的snp进行多次测试时,问题就更加严重了。使用目前的方法和未标准化的环境数据,很难收集相互作用的证据
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISAAC S. KOHANE其他文献
ISAAC S. KOHANE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISAAC S. KOHANE', 18)}}的其他基金
Coordinating Center for the Undiagnosed Disease Network Phase II
未确诊疾病网络二期协调中心
- 批准号:
10599377 - 财政年份:2022
- 资助金额:
$ 15.61万 - 项目类别:
Neuropsychiatric Genome-Scale and RDOC Individualized Domains (N-GRID)
神经精神基因组规模和 RDOC 个体化域 (N-GRID)
- 批准号:
8698507 - 财政年份:2014
- 资助金额:
$ 15.61万 - 项目类别:
Neuropsychiatric Genome-Scale and RDOC Individualized Domains (N-GRID)
神经精神基因组规模和 RDOC 个体化域 (N-GRID)
- 批准号:
8929310 - 财政年份:2014
- 资助金额:
$ 15.61万 - 项目类别:
相似海外基金
Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
- 批准号:
2421267 - 财政年份:2024
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Conference: The 9th Workshop on Biostatistics and Bioinformatics
会议:第九届生物统计与生物信息学研讨会
- 批准号:
2409876 - 财政年份:2024
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Open Access Block Award 2024 - EMBL - European Bioinformatics Institute
2024 年开放获取区块奖 - EMBL - 欧洲生物信息学研究所
- 批准号:
EP/Z532678/1 - 财政年份:2024
- 资助金额:
$ 15.61万 - 项目类别:
Research Grant
PAML 5: A friendly and powerful bioinformatics resource for phylogenomics
PAML 5:用于系统基因组学的友好且强大的生物信息学资源
- 批准号:
BB/X018571/1 - 财政年份:2024
- 资助金额:
$ 15.61万 - 项目类别:
Research Grant
PDB Management by The Research Collaboratory for Structural Bioinformatics
结构生物信息学研究合作实验室的 PDB 管理
- 批准号:
2321666 - 财政年份:2024
- 资助金额:
$ 15.61万 - 项目类别:
Cooperative Agreement
Planning Proposal: CREST Center in Bioinformatics
规划方案:CREST生物信息学中心
- 批准号:
2334642 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Continuing Grant
Building a Bioinformatics Ecosystem for Agri-Ecologists
为农业生态学家构建生物信息学生态系统
- 批准号:
BB/X018768/1 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Research Grant
Integrative viral genomics and bioinformatics platform
综合病毒基因组学和生物信息学平台
- 批准号:
MC_UU_00034/5 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Intramural














{{item.name}}会员




