Mitochondrial Calcium Signaling in Heart

心脏中的线粒体钙信号传导

基本信息

  • 批准号:
    8967676
  • 负责人:
  • 金额:
    $ 13.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): "Mitochondrial Calcium Signaling in Heart" PI: George S. B. Williams. Summary: The heart relies on mitochondria to fuel the massive energy demand associated with pumping blood throughout the body. Calcium (Ca2+) in the mitochondrial matrix influences nearly every major mitochondrial function (including energy production) and is linked to irreversible cell damage during myocardial ischemia-reperfusion (IR) injury. Despite such significance, the level and dynamics of mitochondrial Ca2+ ([Ca2+]) are still poorly understood and remain controversial. For the first time, innovative methods developed by the PI and his mentor Dr. W. J. Lederer, along with key recent mitochondrial discoveries by others (see Background), enable the proposed K25 quantitative investigation of mitochondrial Ca2+ signaling. Preliminary experiments show that the PI and his mentor can measure [Ca2+] dynamically using genetically encoded, mitochondrially targeted Ca2+ sensors. This proposal combines five critical tools developed or enhanced by the PI to investigate [Ca2+]m. These include both technical and methodological advancements: 1) In vivo transduction of the heart with a [Ca2+]m indicator, enabling the simultaneous measurement cytosolic [Ca2+] ([Ca2+])i and [Ca2+]m in freshly isolated cardiomyocytes; 2) Stopped-flow fluorometry that provides accurate, high temporal resolution (millisecond) measurement of mitochondrial Ca2+ fluxes under physiological [Ca2+]i levels in isolated cardiac mitochondria; 3) Technique capable of measuring real-time buffering of [Ca2+]m in isolated mitochondria; 4) Method to rapidly control and simultaneously measure the partial pressure of oxygen in the microenvironment of a living isolated single cardiomyocyte while it is being imaged; 5) A computational model with realistic [Ca2+]i and [Ca2+]m dynamics and fluxes that enables a deeper investigation of the complex relationship between mitochondria and calcium in heart, and in turn informs the experimental approaches. It is the unique combination of these tools that enables the PI to carry out the proposed set of challenging experiments and computational simulations that will yield new insights into mitochondrial Ca2+ signaling in heart. This proposal seeks to investigate [Ca2+]m dynamics during physiological and pathophysiological conditions. The PI hypothesizes that while mitochondrial Ca2+ fluxes are likely small in heart (Williams et al., PNAS 2013), mitochondria still accumulate Ca2+ and under pathophysiological conditions elevated [Ca2+]m may contribute to IR injury. To investigate this hypothesis, the PI will seek to answer three critically important questions: 1) How large are Ca2+ fluxes across the inner mitochondrial membrane of a cardiac mitochondrion?; 2) What are [Ca2+]m dynamics within a healthy single ventricular cardiomyocyte?; and 3) Do elevations in [Ca2+]m levels contribute to cardiac IR injury? The understanding gained by answering the first two questions will be critical to interpreting the results related to the third question. Mitochondrial death, via irreversible mitochondrial permeability transition pore (mPTP) openings, is linked to the vast cell death associated with IR injury. The real-time observation of [Ca2+]m levels that precede the mPTP transitions is critical to gaining new insights into IR injury. The PI has provocative new tools an techniques that will for the first time allow the comparison of [Ca2+]m dynamics during IR injury with [Ca2+]m dynamics under normal conditions in heart. An additional unique feature of the proposed work is the combination of parallel experiments and computational modeling. Computational modeling is significant here as a means to confirm the interpretation of complex experimental observations. This is particularly relevant as mitochondria, especially [Ca2+]m, are notoriously difficult to investigate experimentally. Furthermore, the computational model will provide quantitative measures for the small, likely experimentally invisible, [Ca2+]m transients that must be associated with the known accumulation of Ca2+ by mitochondria during pacing. By investigating the dynamics of [Ca2+]m using a set of focused experimental tests alongside a well-constrained computational model, this work will provide more insights into how [Ca2+]m contributes to cellular physiology and pathophysiology than either approach could achieve alone. The proposed work should thus establish a robust foundation for future investigations and the development of therapeutic approaches. For the PI, this investigation provides exciting state-of-the-art training in one of the most innovative Ca2+ signaling laboratories in the world, te Lederer laboratory. In fact, the proposed work by the PI complements nicely with the ongoing research by the mentor (cardiac Ca2+ signaling) while extending it in a new direction (IR injury). Most importantly, however, the proposed investigation supports the PI's long-term career goal of combining novel and quantitative experimental investigations with theoretical modeling to broaden our understanding of cardiac molecular and cellular physiology.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George S. B. Williams其他文献

George S. B. Williams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George S. B. Williams', 18)}}的其他基金

Mitochondrial Calcium Signaling in Heart
心脏中的线粒体钙信号传导
  • 批准号:
    9102242
  • 财政年份:
    2015
  • 资助金额:
    $ 13.24万
  • 项目类别:
Molecular basis of Ca2+ leak in heart
心脏Ca2漏的分子基础
  • 批准号:
    8461982
  • 财政年份:
    2011
  • 资助金额:
    $ 13.24万
  • 项目类别:
Molecular basis of Ca2+ leak in heart
心脏Ca2漏的分子基础
  • 批准号:
    8266046
  • 财政年份:
    2011
  • 资助金额:
    $ 13.24万
  • 项目类别:
Molecular basis of Ca2+ leak in heart
心脏Ca2漏的分子基础
  • 批准号:
    8127333
  • 财政年份:
    2011
  • 资助金额:
    $ 13.24万
  • 项目类别:

相似国自然基金

帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
    32170319
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
  • 批准号:
    31672538
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
  • 批准号:
    31372080
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
  • 批准号:
    81172529
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
  • 批准号:
    81070952
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
  • 批准号:
    30672361
  • 批准年份:
    2006
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 13.24万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 13.24万
  • 项目类别:
    Continuing Grant
Alkane transformations through binding to metals
通过与金属结合进行烷烃转化
  • 批准号:
    DP240103289
  • 财政年份:
    2024
  • 资助金额:
    $ 13.24万
  • 项目类别:
    Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
  • 批准号:
    EP/Y029542/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.24万
  • 项目类别:
    Fellowship
Conformations of musk odorants and their binding to human musk receptors
麝香气味剂的构象及其与人类麝香受体的结合
  • 批准号:
    EP/X039420/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.24万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OPP-PRF: Understanding the Role of Specific Iron-binding Organic Ligands in Governing Iron Biogeochemistry in the Southern Ocean
博士后奖学金:OPP-PRF:了解特定铁结合有机配体在控制南大洋铁生物地球化学中的作用
  • 批准号:
    2317664
  • 财政年份:
    2024
  • 资助金额:
    $ 13.24万
  • 项目类别:
    Standard Grant
I-Corps: Translation Potential of Real-time, Ultrasensitive Electrical Transduction of Biological Binding Events for Pathogen and Disease Detection
I-Corps:生物结合事件的实时、超灵敏电转导在病原体和疾病检测中的转化潜力
  • 批准号:
    2419915
  • 财政年份:
    2024
  • 资助金额:
    $ 13.24万
  • 项目类别:
    Standard Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
  • 批准号:
    2347997
  • 财政年份:
    2024
  • 资助金额:
    $ 13.24万
  • 项目类别:
    Standard Grant
How lipid binding proteins shape the activity of nuclear hormone receptors
脂质结合蛋白如何影响核激素受体的活性
  • 批准号:
    DP240103141
  • 财政年份:
    2024
  • 资助金额:
    $ 13.24万
  • 项目类别:
    Discovery Projects
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
  • 批准号:
    MR/Y013131/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了