Using 'Big Data' and Precision Medicine to Assess and Manage Suicide Risk in U.S. Veterans
使用“大数据”和精准医学评估和管理美国退伍军人的自杀风险
基本信息
- 批准号:9842275
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAgeAlgorithmsAreaBig DataBiologicalBiologyCandidate Disease GeneClinicalCodeDataDiagnosticEnrollmentEventFailureFamilyFeeling suicidalGene ExpressionGeneticGenetic MarkersGenetic ResearchGenetic RiskGenetic studyGenotypeGoalsGrief reactionHeritabilityInterventionLeadMental disordersMethylationMilitary PersonnelMissionNot Hispanic or LatinoPainPathway interactionsPhenotypePopulationPrevention approachResearchSample SizeSelf-DirectionSingle Nucleotide PolymorphismSuicideSuicide attemptSuicide preventionTimeTwin StudiesUnited States Department of Veterans AffairsVariantVeteransViolenceWorkactive dutyadministrative databasebasecohorteconomic costgenetic variantgenome wide association studygenome-widehigh riskimprovedinnovationnovelphenotypic dataprecision medicineprogramspsychogeneticsreducing suiciderisk variantscreeningsexstatisticssuicidal behaviorsuicidal morbiditysuicidal risk
项目摘要
Reducing suicide and suicidal behavior (i.e., self-directed violence) is a top priority for the Department of
Veterans Affairs. Recent statistics indicate that, on average, 20 Veterans die by suicide in the U.S. each day.
Family, adoption, and twin studies indicate that genetic factors account for 30-50% of the heritability in suicidal
behavior. Numerous candidate gene and genome wide association studies (GWAS) have been conducted to
identify variants associated with suicidal behavior; however, a major limitation of all prior genetic studies in this
area of research is low statistical power due to small sample sizes and the infrequency with which suicidal
behavior occurs. Another significant limitation concerns the failure of most prior genetic studies of suicidal
behavior to include Veterans, despite the fact that Veterans are at significantly increased risk for suicide and
suicidal behavior.
The proposed research will address these limitations by leveraging the genetic and phenotypic data available
through the Million Veteran Program (MVP) and other key administrative databases to perform the largest and
most well-powered GWAS of suicidal behavior to date. The potential impact of identifying novel genetic
markers that reliably predict suicidal behavior would be enormous. It could fundamentally shift current
understanding of the biology of suicide, lead to new and improved approaches to suicide prevention for
Veterans and civilians alike, and significantly improve VA's ongoing efforts to identify and intervene with high
risk Veterans before they engage in suicidal behavior.
Our long-term goal is to develop effective screening and intervention strategies to reduce the occurrence of
suicide and suicidal behavior. The overall objective of this application is to discover novel genetic variants that
increase Veterans' risk for suicidal behavior. The rationale for the proposed research is that identification of
genetic variants that are reliably associated with suicidal behavior could lead to the discovery of novel,
clinically-meaningful biological pathways that could, in turn, lead to new and improved suicide prevention
approaches for Veterans. We will accomplish our overall objective by pursuing the following specific aims:
In Aim 1, we will refine the phenotypes that we will use to define cases of suicidal behavior within MVP. In Aim
2, we will use GWAS to identify novel genetic variants associated with suicide attempts and suicidal ideation
among Veterans in MVP. In Aim 3, we will replicate significant findings obtained from the MVP cohort in the
Mid-Atlantic MIRECC and Army STARRS Cohorts. In Aim 4, we will explore whether the genetic findings
obtained from MVP can be used to improve VA's ability to identify Veterans at risk for suicidal behavior.
减少自杀和自杀行为(即,自我导向的暴力)是该部的首要任务。
退伍军人事务部最近的统计数据显示,平均每天有20名退伍军人在美国自杀。
家庭、收养和双胞胎研究表明,自杀的遗传因素占30- 50
行为已经进行了许多候选基因和全基因组关联研究(GWAS),
确定与自杀行为相关的变异;然而,所有先前的遗传研究在这方面的主要局限性是,
研究领域是低统计功率由于小样本量和频率与自杀
行为发生。另一个重要的局限性涉及大多数先前的自杀基因研究的失败,
行为,包括退伍军人,尽管事实上,退伍军人是在显着增加自杀的风险,
自杀行为
拟议的研究将通过利用现有的遗传和表型数据来解决这些限制
通过百万退伍军人计划(MVP)和其他重要的管理数据库,
最有力的自杀行为GWAS识别新的遗传基因的潜在影响
可靠地预测自杀行为的标记将是巨大的。它可以从根本上改变电流
了解自杀的生物学,导致新的和改进的方法来预防自杀,
退伍军人和平民一样,并显着改善VA的持续努力,以确定和干预高
在他们从事自杀行为之前,
我们的长远目标是发展有效的甄别和介入策略,以减少
自杀和自杀行为。本申请的总体目标是发现新的遗传变体,
增加退伍军人自杀行为的风险。拟议研究的理由是,
与自杀行为可靠相关的遗传变异可能导致新的发现,
具有临床意义的生物学途径,反过来可以导致新的和改进的自杀预防
为退伍军人服务。我们将通过实现以下具体目标来实现我们的总体目标:
在目标1中,我们将细化表型,用于定义MVP中的自杀行为病例。在Aim中
2,我们将使用GWAS来识别与自杀企图和自杀意念相关的新型遗传变异
在MVP的老兵中。在目标3中,我们将复制从MVP队列中获得的重要发现,
中大西洋MIRECC和陆军STARRS队列。在目标4中,我们将探讨基因发现是否
从MVP获得的数据可以用来提高VA识别有自杀行为风险的退伍军人的能力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep sequential neural network models improve stratification of suicide attempt risk among US veterans.
深度序列神经网络模型改善了美国退伍军人自杀未遂风险的分层。
- DOI:10.1093/jamia/ocad167
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Martinez,Carianne;Levin,Drew;Jones,Jessica;Finley,PatrickD;McMahon,Benjamin;Dhaubhadel,Sayera;Cohn,Judith;MillionVeteranProgram;MVPSuicideExemplarWorkgroup;Oslin,DavidW;Kimbrel,NathanA;Beckham,JeanC
- 通讯作者:Beckham,JeanC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEAN C. BECKHAM其他文献
JEAN C. BECKHAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEAN C. BECKHAM', 18)}}的其他基金
A Gene-by-Environment Genome-Wide Interaction Study (GEWIS) of Suicidal Thoughts and Behaviors in Veterans
退伍军人自杀想法和行为的基因与环境全基因组相互作用研究 (GEWIS)
- 批准号:
10487767 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Impact of Reduced Cannabis Use on Functional Outcomes
减少大麻使用对功能结果的影响
- 批准号:
10437223 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Functional Outcomes of Cannabis Use (FOCUS) in Veterans with Posttraumatic Stress Disorder
患有创伤后应激障碍的退伍军人使用大麻(FOCUS)的功能结果
- 批准号:
10275490 - 财政年份:2020
- 资助金额:
-- - 项目类别:
An evaluation of insomnia treatment to reduce cardiovascular risk in patients with posttraumatic stress disorder
失眠治疗降低创伤后应激障碍患者心血管风险的评估
- 批准号:
10199022 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Functional Outcomes of Cannabis Use (FOCUS) in Veterans withPosttraumatic Stress Disorder
患有创伤后应激障碍的退伍军人使用大麻(FOCUS)的功能结果
- 批准号:
10756927 - 财政年份:2020
- 资助金额:
-- - 项目类别:
An evaluation of insomnia treatment to reduce cardiovascular risk in patients with posttraumatic stress disorder
失眠治疗降低创伤后应激障碍患者心血管风险的评估
- 批准号:
10647818 - 财政年份:2020
- 资助金额:
-- - 项目类别:
An evaluation of insomnia treatment to reduce cardiovascular risk in patients with posttraumatic stress disorder
失眠治疗降低创伤后应激障碍患者心血管风险的评估
- 批准号:
10471176 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Functional Outcomes of Cannabis Use (FOCUS) in Veterans withPosttraumatic Stress Disorder
患有创伤后应激障碍的退伍军人使用大麻(FOCUS)的功能结果
- 批准号:
10508499 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Using 'Big Data' and Precision Medicine to Assess and Manage Suicide Risk in U.S. Veterans
使用“大数据”和精准医学评估和管理美国退伍军人的自杀风险
- 批准号:
9483413 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Impact of Reduced Cannabis Use on Functional Outcomes
减少大麻使用对功能结果的影响
- 批准号:
10302325 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




