The Roles of Inflammatory and Glutamatergic Processes in the Neurodevelopmental Mechanisms Underlying Adolescent Depression
炎症和谷氨酸能过程在青少年抑郁症神经发育机制中的作用
基本信息
- 批准号:9933235
- 负责人:
- 金额:$ 4.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdministrative SupplementAdolescentAgeAreaBehaviorCause of DeathClassificationClinicalDataDepressive disorderDiffusion Magnetic Resonance ImagingEnrollmentEnsureEtiologyFeeling suicidalFosteringFunctional Magnetic Resonance ImagingFundingGenderGlutamatesGoalsGrantGrowthInflammationInflammatoryInfrastructureInterviewInvestigationLaboratoriesLogistic RegressionsMachine LearningMagnetic Resonance ImagingMagnetic Resonance SpectroscopyMaintenanceMeasurementMeasuresMediatingModelingNational Institute of Mental HealthNatureNeurobiologyPatient Self-ReportPatternPhenotypePrevalenceProcessQuestionnairesRecording of previous eventsResearchResearch PersonnelResearch TrainingRestRiskRisk FactorsRoleSamplingSleepSocial InteractionStatistical MethodsStressStructureSuicideTechnologyTestingTimeUnited Statesadolescent suicidebasechild depressionclassification algorithmcognitive testingcomparison groupcytokinedigitalepidemiologic datafallsfeature detectionhigh dimensionalityhigh riskhigh-risk adolescentsimmune functionimprovedlongitudinal datasetmachine learning algorithmmobile applicationmultidimensional datamultimodalityneurobiological mechanismneuroimagingnovelparent grantpsychosocialreal time monitoringsuicidalsuicidal behaviorsuicidal risksuicide attemptertrend
项目摘要
ABSTRACT
Suicidal thoughts and behaviors (STBs) are growing more prevalent among adolescents; despite these
alarming trends, researchers have been hampered in their efforts to identify antecedents of STBs because of
the transient nature of suicidal impulses that are unlikely to be captured during a clinical or laboratory
assessment. Furthermore, research in this area has focused primarily on time-invariant factors (e.g., gender)
and self-disclosed information, which greatly limits our understanding of the neurobiological and psychosocial
mechanisms underlying the etiology and maintenance of STBs. Advances in real-time monitoring technology,
including mobile apps, provide an unprecedented opportunity to continuously measure key behaviors relevant
for understanding suicide risk (e.g., social interactions, sleep) outside of the laboratory for the purposes
generating digital phenotypes of STBs. Moreover, statistical approaches such as machine learning are ideal for
handling high-dimensional data across different constructs (e.g., clinical, digital, neurobiological) and are
increasingly being used in the context of improving prediction of STBs. Thus, the overarching goal of this
supplement is to collect and integrate digital phenotypes with neurobiological phenotypes in a machine
learning framework to identify multi-level factors associated with the etiology and maintenance of STBs in a
high-risk sample: depressed adolescents. Specifically, we will build on the existing infrastructure of the parent
grant—which focuses on characterizing the stress-related neurobiological trajectories using a multi-level
approach in a sample of depressed adolescents—by seeking to identify multi-level predictors and trajectories
of STBs in this high-risk sample and to compute deviations from normative phenotypes and trajectories
computed from a low-risk comparison group. We will use machine learning algorithms to identify the
constellation of factors that best predict likelihood of engaging in STBs by Time 3 among the depressed
adolescents (Aim 1); we will also identify the factors that best predict trajectories of STBs based on changes
from Time to Time 3 among the depressed adolescents (Aim 2); we will also test whether deviations from
normative phenotypes and trajectories (computed from data in the healthy controls) are better predictors of
STBs (Aim 3). In accordance with NOT-MH-19-026 (“Administrative Supplements for NIMH Grants to Expand
Suicide Research”), this approach addresses current barriers in our understanding of the mechanisms of
action underlying suicide risk by collecting ecologically valid measurements of suicide-relevant behaviors and
by fostering advanced statistical methods for multi-level and cross-construct integration.
摘要
自杀的想法和行为(STBs)在青少年中越来越普遍;尽管如此,
令人担忧的趋势,研究人员一直在努力确定STBs的前身,因为
自杀冲动的短暂性,在临床或实验室中不太可能被捕获
考核此外,该领域的研究主要集中在时不变因素(例如,性别)
和自我披露的信息,这极大地限制了我们对神经生物学和心理社会学的理解。
STBs的病因学和维持机制。实时监测技术的进步,
包括移动的应用程序,提供了一个前所未有的机会,可以持续衡量关键的相关行为
为了理解自杀风险(例如,社会交往,睡眠)在实验室外的目的
生成STB的数字表型。此外,机器学习等统计方法非常适合
处理跨不同构造的高维数据(例如,临床、数字、神经生物学),
越来越多地被用于改善STB的预测。因此,这一总体目标
补充是在机器中收集并整合数字表型与神经生物学表型
学习框架,以确定多层次的因素与病因学和维护性传播疾病,
高风险样本:抑郁青少年。具体而言,我们将在母公司现有基础设施的基础上进行建设
格兰特-这侧重于表征压力相关的神经生物学轨迹使用多层次的
方法在一个样本的抑郁症-通过寻求确定多层次的预测和轨迹
在这个高风险样本中的STB,并计算偏离规范表型和轨迹
从低风险对照组计算。我们将使用机器学习算法来识别
最能预测抑郁症患者在时间3前从事STBs的可能性的因素星座
青少年(目标1);我们还将根据变化确定最能预测STB轨迹的因素
从时间到时间3在抑郁的青少年(目标2);我们还将测试是否偏离
正常表型和轨迹(从健康对照组的数据计算)是更好的预测因子,
STB(目标3)。根据NOT-MH-19-026(“NIMH赠款扩展的行政补充
自杀研究”),这种方法解决了我们理解自杀机制的现有障碍。
通过收集自杀相关行为的生态有效测量结果,
通过培养先进的统计方法进行多层次和跨结构的整合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIFFANY CHEING HO其他文献
TIFFANY CHEING HO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIFFANY CHEING HO', 18)}}的其他基金
Integrating 1H MRS with 2H-Labeled Glucose to Characterize Dynamic Glutamate Metabolism in Major Depressive Disorder
将 1H MRS 与 2H 标记的葡萄糖相结合来表征重度抑郁症的动态谷氨酸代谢
- 批准号:
10668075 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别:
Inflammatory and Glutamatergic Mechanisms of Sustained Threat in Adolescents with Depression: Toward Predictors of Treatment Response and Clinical Course
抑郁症青少年持续威胁的炎症和谷氨酸机制:治疗反应和临床过程的预测因子
- 批准号:
10755122 - 财政年份:2022
- 资助金额:
$ 4.11万 - 项目类别:
Inflammatory and Glutamatergic Mechanisms of Sustained Threat in Adolescents with Depression: Toward Predictors of Treatment Response and Clinical Course
抑郁症青少年持续威胁的炎症和谷氨酸机制:治疗反应和临床过程的预测因子
- 批准号:
10622580 - 财政年份:2022
- 资助金额:
$ 4.11万 - 项目类别:
Inflammatory and Glutamatergic Mechanisms of Sustained Threat in Adolescents with Depression: Toward Predictors of Treatment Response and Clinical Course
抑郁症青少年持续威胁的炎症和谷氨酸机制:治疗反应和临床过程的预测因素
- 批准号:
10445166 - 财政年份:2022
- 资助金额:
$ 4.11万 - 项目类别:
The Roles of Inflammatory and Glutamatergic Processes in the Neurodevelopmental Mechanisms Underlying Adolescent Depression
炎症和谷氨酸能过程在青少年抑郁症神经发育机制中的作用
- 批准号:
10756332 - 财政年份:2018
- 资助金额:
$ 4.11万 - 项目类别:
The Roles of Inflammatory and Glutamatergic Processes in the Neurodevelopmental Mechanisms Underlying Adolescent Depression
炎症和谷氨酸能过程在青少年抑郁症神经发育机制中的作用
- 批准号:
10551423 - 财政年份:2018
- 资助金额:
$ 4.11万 - 项目类别:
The Roles of Inflammatory and Glutamatergic Processes in the Neurodevelopmental Mechanisms Underlying Adolescent Depression
炎症和谷氨酸能过程在青少年抑郁症神经发育机制中的作用
- 批准号:
10094020 - 财政年份:2018
- 资助金额:
$ 4.11万 - 项目类别:
The Roles of Inflammatory and Glutamatergic Processes in the Neurodevelopmental Mechanisms Underlying Adolescent Depression
炎症和谷氨酸能过程在青少年抑郁症神经发育机制中的作用
- 批准号:
10165829 - 财政年份:2018
- 资助金额:
$ 4.11万 - 项目类别:
相似海外基金
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 4.11万 - 项目类别: