Patient Specific Tissue Engineered Vascular Graft Creation Using 3D Printing Technology
使用 3D 打印技术创建患者特异性组织工程血管移植物
基本信息
- 批准号:9882302
- 负责人:
- 金额:$ 37.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D Print4D MRIAnatomyAnimal ModelAnimalsBiocompatible MaterialsBlood VesselsCaliberCardiovascular systemCause of DeathClinical TrialsComplexComputer-Aided DesignDataEnsureExperimental Animal ModelFDA approvedGeometryGoalsGrowthHealthHistologicImageImage-Guided SurgeryImplantIn VitroInferior vena cava structureLeadMagnetic Resonance ImagingMeasurementMeasuresMechanicsMetalsMethodsModelingMolecularMorbidity - disease rateOperative Surgical ProceduresPatient CarePatientsPerformancePhasePhysiologicalPositioning AttributeProceduresQuality of lifeReproducibilityRouteSafetyShapesSheepSourceStenosisStructureSurgeonSurgical ManagementTechnologyTestingThree-Dimensional ImagingTimeTissue EngineeringTissuesVascular GraftVisionWorkbaseclinical applicationcongenital anomalycongenital heart disorderdesignexperienceexperimental studyhemodynamicsimplantationimprovedin vivoin vivo Modelmechanical propertiesmortalitynanofibernovelpediatric patientspreservationpressurereconstructionscaffoldsheep modelsurgery outcomevascular tissue engineering
项目摘要
Congenital heart disease (CHD) is the leading cause of death associated with congenital anomalies.
Despite significant advances in surgical management for CHD, one significant source of morbidity and
mortality arises from the complexity of surgery for the diverse anatomies. Previous studies demonstrated that
the ideal design of reconstruction for stenosis or hypoplastic vessels during surgery is important to reduce
energy loss and undesirable flow inside of graft. However, surgeons have no information of flow dynamics and
hemodynamics data of the reconstructed route during procedure because the surgical field needs to be
bloodless. Therefore, ensuring a patient-specific graft design for ideal reconstructed route before surgery with
a balanced flow distribution and minimum energy loss may yield long-term benefits for patient health and
quality of life.
The goal of this proposal is to demonstrate our integrated approach of recent progress in 3D
imaging, 3D printing, and tissue engineering technology can create pre-surgically designed patient-
specific vascular graft that can promote optimal neovessel formation with growth over time. We have
demonstrated native vessel like neotissue formation of tissue engineered vascular graft (TEVG) using FDA
approved biomaterials of PGA/PCLA in small and large animal studies. Based on these experiences, we have
developed novel 3D printing technology combining 3D printed metal mandrels with nanofiber electrospun
technology. With this 3D printing technology, we showed that straight conduit shaped TEVG developed native
like neovessel formation in a sheep model. For this next step, we aim to develop TEVG with complex shapes
that can be applied to real patients with complex anatomy. We hypothesized that patient-specific TEVG
made of nanofiber PGA/PCLA using our 3D printing technology can be designed using CAD with pre-
operative imaging and flow dynamics data, and demonstrate proper neotissue formation with growth
over time. To this end, in R21 phase, 1) we will optimize patient-specific creation of 3D printed vascular grafts
and test In-vitro and 2) We will determine if the estimated flow dynamics analysis of pre-operative design can
match with the performance of actual 3D printed grafts using short-term in vivo model. In R33 phase, we will
determine if the estimated flow dynamics of pre-operative design can be preserved in growing neotissue after
degradation of graft using long-term animal model.
This project will be an important step towards clinical application of patient-specific vascular grafts that
recapitulate the native anatomy and mechanical properties. The results of this work will have a broader impact
on the design and fabrication of other more complex cardiovascular structures for implantation. This paradigm
shift in vascular graft technology will improve the quality and safety of pediatric patient care.
先天性心脏病(CHD)是与先天性异常相关的主要死亡原因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Narutoshi Hibino其他文献
Narutoshi Hibino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Narutoshi Hibino', 18)}}的其他基金
Nanoporous semiconductor-enabled multi-site photostimulation for cardiac resynchronization therapy
用于心脏再同步治疗的纳米多孔半导体多部位光刺激
- 批准号:
10861527 - 财政年份:2023
- 资助金额:
$ 37.3万 - 项目类别:
Novel drug-eluting sutures to prevent vascular graft anastomosis stenosis
新型药物洗脱缝合线预防血管移植吻合口狭窄
- 批准号:
10085517 - 财政年份:2018
- 资助金额:
$ 37.3万 - 项目类别:
Patient Specific Tissue Engineered Vascular Graft Creation Using 3D Printing Technology
使用 3D 打印技术创建患者特异性组织工程血管移植物
- 批准号:
9245784 - 财政年份:2017
- 资助金额:
$ 37.3万 - 项目类别:
Patient Specific Tissue Engineered Vascular Graft Creation Using 3D Printing Technology
使用 3D 打印技术创建患者特异性组织工程血管移植物
- 批准号:
10056602 - 财政年份:2017
- 资助金额:
$ 37.3万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 37.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 37.3万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 37.3万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 37.3万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 37.3万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 37.3万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 37.3万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 37.3万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 37.3万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 37.3万 - 项目类别:
Standard Grant