Patient Specific Tissue Engineered Vascular Graft Creation Using 3D Printing Technology
使用 3D 打印技术创建患者特异性组织工程血管移植物
基本信息
- 批准号:10056602
- 负责人:
- 金额:$ 42.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D Print4D MRIAnatomyAnimal ModelAnimalsBiocompatible MaterialsBlood VesselsCaliberCardiovascular systemCause of DeathClinical TrialsComplexComputer-Aided DesignDataEnsureExperimental Animal ModelFDA approvedGeometryGoalsGrowthHealthHistologicImageImage-Guided SurgeryImplantIn VitroInferior vena cava structureLeadMagnetic Resonance ImagingMeasurementMeasuresMechanicsMetalsMethodsModelingMolecularMorbidity - disease rateOperative Surgical ProceduresPatient CarePatientsPerformancePhasePhysiologicalPositioning AttributeProceduresQuality of lifeReproducibilityRouteSafetyShapesSheepSourceStenosisStructureSurgeonSurgical ManagementTechnologyTestingThree-Dimensional ImagingTimeTissue EngineeringTissuesVascular GraftVisionWorkbaseclinical applicationcongenital anomalycongenital heart disorderdesignexperienceexperimental studyhemodynamicsimplantationimprovedin vivoin vivo Modelmechanical propertiesmortalitynanofibernovelpediatric patientspreservationpressurereconstructionscaffoldsurgery outcomevascular tissue engineering
项目摘要
Congenital heart disease (CHD) is the leading cause of death associated with congenital anomalies.
Despite significant advances in surgical management for CHD, one significant source of morbidity and
mortality arises from the complexity of surgery for the diverse anatomies. Previous studies demonstrated that
the ideal design of reconstruction for stenosis or hypoplastic vessels during surgery is important to reduce
energy loss and undesirable flow inside of graft. However, surgeons have no information of flow dynamics and
hemodynamics data of the reconstructed route during procedure because the surgical field needs to be
bloodless. Therefore, ensuring a patient-specific graft design for ideal reconstructed route before surgery with
a balanced flow distribution and minimum energy loss may yield long-term benefits for patient health and
quality of life.
The goal of this proposal is to demonstrate our integrated approach of recent progress in 3D
imaging, 3D printing, and tissue engineering technology can create pre-surgically designed patient-
specific vascular graft that can promote optimal neovessel formation with growth over time. We have
demonstrated native vessel like neotissue formation of tissue engineered vascular graft (TEVG) using FDA
approved biomaterials of PGA/PCLA in small and large animal studies. Based on these experiences, we have
developed novel 3D printing technology combining 3D printed metal mandrels with nanofiber electrospun
technology. With this 3D printing technology, we showed that straight conduit shaped TEVG developed native
like neovessel formation in a sheep model. For this next step, we aim to develop TEVG with complex shapes
that can be applied to real patients with complex anatomy. We hypothesized that patient-specific TEVG
made of nanofiber PGA/PCLA using our 3D printing technology can be designed using CAD with pre-
operative imaging and flow dynamics data, and demonstrate proper neotissue formation with growth
over time. To this end, in R21 phase, 1) we will optimize patient-specific creation of 3D printed vascular grafts
and test In-vitro and 2) We will determine if the estimated flow dynamics analysis of pre-operative design can
match with the performance of actual 3D printed grafts using short-term in vivo model. In R33 phase, we will
determine if the estimated flow dynamics of pre-operative design can be preserved in growing neotissue after
degradation of graft using long-term animal model.
This project will be an important step towards clinical application of patient-specific vascular grafts that
recapitulate the native anatomy and mechanical properties. The results of this work will have a broader impact
on the design and fabrication of other more complex cardiovascular structures for implantation. This paradigm
shift in vascular graft technology will improve the quality and safety of pediatric patient care.
先天性心脏病(CHD)是与先天性异常相关的死亡的主要原因。
尽管冠心病的外科治疗取得了显著进展,但一个重要的发病率来源,
死亡率是由于不同解剖结构的外科手术的复杂性引起的。先前的研究表明,
手术中狭窄或发育不良血管重建的理想设计对于减少
能量损失和移植物内的不希望的流动。然而,外科医生没有流动动力学的信息,
手术过程中重建路径的血液动力学数据,因为手术野需要
不流血因此,在手术前确保患者特定的移植物设计以获得理想的重建路径,
平衡的流量分布和最小的能量损失可以为患者健康带来长期的益处,
生活质量
本提案的目标是展示我们在3D方面最新进展的综合方法
成像,3D打印和组织工程技术可以创建手术前设计的患者,
特异性血管移植物,其可以随着时间的推移促进最佳新血管形成和生长。我们有
使用FDA证明了组织工程血管移植物(TEVG)的天然血管样新组织形成
在小型和大型动物研究中批准PGA/PCLA生物材料。根据这些经验,我们
开发了一种新型3D打印技术,将3D打印金属芯轴与静电纺丝相结合
技术.通过这种3D打印技术,我们展示了直导管形TEVG的天然发展,
比如绵羊模型中的新血管形成。对于下一步,我们的目标是开发具有复杂形状的TEVG
可以应用于具有复杂解剖结构的真实的患者。我们假设患者特异性TEVG
使用我们的3D打印技术由PGA/PCLA制成,可以使用CAD设计,
手术成像和血流动力学数据,并证明新组织形成并生长
随着时间为此,在R21阶段,1)我们将优化3D打印血管移植物的患者特异性创建
2)我们将确定术前设计的估计流动动力学分析是否可以
与使用短期体内模型的实际3D打印移植物的性能相匹配。在R33阶段,
确定术前设计的估计血流动力学是否可以在术后生长的新组织中保留
使用长期动物模型观察移植物的降解。
该项目将是患者特异性血管移植物临床应用的重要一步,
再现了天然解剖结构和机械性能。这项工作的成果将产生更广泛的影响
设计和制造其他更复杂的心血管植入结构。这种范式
血管移植技术的转变将提高儿科患者护理的质量和安全性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Narutoshi Hibino其他文献
Narutoshi Hibino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Narutoshi Hibino', 18)}}的其他基金
Nanoporous semiconductor-enabled multi-site photostimulation for cardiac resynchronization therapy
用于心脏再同步治疗的纳米多孔半导体多部位光刺激
- 批准号:
10861527 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Novel drug-eluting sutures to prevent vascular graft anastomosis stenosis
新型药物洗脱缝合线预防血管移植吻合口狭窄
- 批准号:
10085517 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
Patient Specific Tissue Engineered Vascular Graft Creation Using 3D Printing Technology
使用 3D 打印技术创建患者特异性组织工程血管移植物
- 批准号:
9245784 - 财政年份:2017
- 资助金额:
$ 42.42万 - 项目类别:
Patient Specific Tissue Engineered Vascular Graft Creation Using 3D Printing Technology
使用 3D 打印技术创建患者特异性组织工程血管移植物
- 批准号:
9882302 - 财政年份:2017
- 资助金额:
$ 42.42万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 42.42万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 42.42万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 42.42万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 42.42万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 42.42万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 42.42万 - 项目类别:
Standard Grant