Quantitative dual-mode scanner for breast cancer therapy

用于乳腺癌治疗的定量双模式扫描仪

基本信息

  • 批准号:
    8840435
  • 负责人:
  • 金额:
    $ 10.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of this project is to develop a dual-mode PET/x-ray mammography scanner (PET/X) to improve the way in which breast cancer therapies are matched to patients by providing early evaluation of therapy efficacy through 'window' studies on an individual patient basis. More than 200,000 women in the US start therapy for breast cancer each year. In 2012 approximately 40,000 deaths will result from breast cancer. Often the first-line chemotherapies, hormonal therapies, and targeted therapies are not effective, requiring second- or third-line therapies. Unfortunately, the success of therapy is usually determined by waiting to see if there is a substantial reduction in tumor size, which may not occur until late in the course of treatment. Early assessment of treatment effectiveness will improve outcomes, reduce morbidity, and reduce cost. A compact PET imaging module that can be used as an add-on with X-ray mammography scanners will help inform the physician's choices of effective therapies for breast cancer patients. Early evaluation of a therapy's effectiveness will help the treating physician individualize a patient's treatment: A baseline (pre treatment) PET image will be taken, then, after a short regimen of a targeted therapy, a post-therapy PET scan will be used to evaluate responses to treatment, and thus will be used to guide selection of post-surgery adjuvant therapy during the window of opportunity between diagnosis and surgery. For this treatment paradigm to become broadly accepted and widely used, the scanner needs to be higher resolution, more compact, and less expensive than standard whole-body PET scanners. In addition a high level of quantitative accuracy is needed. This Phase-I application will show proof of principle of a detector multiplexing technology that substantially reduces costs for detector electronics for a compact high-resolution PET scanner suitable for breast cancer imaging. By using optimal multiplexing technologies for the detector readout electronics, the number of signal channels can be dramatically reduced, thus reducing cost, while still meeting quantitative imaging performance goals.
描述(由申请人提供):本项目的目标是开发一种双模式PET/X射线乳腺摄影扫描仪(PET/X),通过在个体患者基础上进行“窗口”研究,提供治疗疗效的早期评估,从而改善乳腺癌治疗与患者匹配的方式。美国每年有超过20万名女性开始接受乳腺癌治疗。2012年,约有40 000人死于乳腺癌。通常,一线化疗,激素治疗和靶向治疗无效,需要二线或三线治疗。不幸的是,治疗的成功通常是通过等待肿瘤大小是否大幅减少来确定的,这可能直到治疗过程的后期才发生。早期评估治疗效果将改善预后,降低发病率,并降低成本。一个紧凑的PET成像模块,可作为一个附加的X射线乳腺摄影扫描仪将有助于告知医生的选择有效的治疗乳腺癌患者。早期评估治疗的有效性将有助于治疗医生个性化患者的治疗:基线(前 治疗)PET图像,然后,在短期靶向治疗方案后,治疗后PET扫描将用于评估对治疗的反应,从而将用于指导在诊断和手术之间的机会窗口期间选择手术后辅助治疗。为了使这种治疗模式得到广泛接受和广泛使用,扫描仪需要比标准全身PET扫描仪具有更高的分辨率,更紧凑,更便宜。此外,还需要高水平的定量准确性。该第一阶段应用将证明探测器多路复用技术的原理,该技术大大降低了适用于乳腺癌成像的紧凑型高分辨率PET扫描仪的探测器电子设备的成本。通过对检测器读出电子器件使用最佳复用技术,可以显著减少信号通道的数量,从而降低成本,同时仍然满足定量成像性能目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Coulis Jason Hunter其他文献

William Coulis Jason Hunter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Coulis Jason Hunter', 18)}}的其他基金

A Sparse-readout Quantitative PET scanner for breast cancer therapy optimization
用于优化乳腺癌治疗的稀疏读数定量 PET 扫描仪
  • 批准号:
    10080314
  • 财政年份:
    2016
  • 资助金额:
    $ 10.65万
  • 项目类别:
A Sparse-readout Quantitative PET scanner for breast cancer therapy optimization
用于优化乳腺癌治疗的稀疏读数定量 PET 扫描仪
  • 批准号:
    9256313
  • 财政年份:
    2016
  • 资助金额:
    $ 10.65万
  • 项目类别:
A Sparse-readout Quantitative PET scanner for breast cancer therapy optimization
用于优化乳腺癌治疗的稀疏读数定量 PET 扫描仪
  • 批准号:
    10260645
  • 财政年份:
    2016
  • 资助金额:
    $ 10.65万
  • 项目类别:
Quantitative dual-mode scanner for breast cancer therapy
用于乳腺癌治疗的定量双模式扫描仪
  • 批准号:
    8908973
  • 财政年份:
    2013
  • 资助金额:
    $ 10.65万
  • 项目类别:
Quantitative dual-mode scanner for breast cancer therapy
用于乳腺癌治疗的定量双模式扫描仪
  • 批准号:
    8590731
  • 财政年份:
    2013
  • 资助金额:
    $ 10.65万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 10.65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了