A Sparse-readout Quantitative PET scanner for breast cancer therapy optimization

用于优化乳腺癌治疗的稀疏读数定量 PET 扫描仪

基本信息

  • 批准号:
    10260645
  • 负责人:
  • 金额:
    $ 73.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-29 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Our goal is to improve how breast cancer therapies are matched to individual breast-cancer patients with early- stage disease by providing a timely evaluation of therapy efficacy during the window of opportunity between diagnosis and surgical resection. In so doing, we aim to direct patients more quickly to effective therapies, improving outcomes, and reducing toxicities and healthcare costs from ineffective treatments. We will achieve this goal by developing a commercially viable, quantitative molecular breast imaging system (the PET/X scanner) that combines synergistically with mammography or tomosynthesis systems in breast imaging clinics. Breast cancer is the most common type of cancer found in US women and is the second leading cause of cancer death among women after lung cancer. Substantial progress has been made in treating breast cancer due to the use of targeted therapies. Unfortunately, despite the successes of targeted therapies the relapse rate in patients expressing the targets and receiving these therapies still approaches 50% for certain phenotypes. The drugs can be very costly and carry toxic side effects. Selecting from the 69 FDA approved breast cancer drugs (the most of any cancer) is challenging. A test to provide a rapid and direct measure of therapy response in each patient, or lack thereof, would greatly benefit patient care by matching patients to drugs with demonstrated success against their disease. The selection of therapies that optimize patient outcomes is a cornerstone of both the NIH precision medicine initiative and recommendations from the NCI Cancer Moonshot report. Positron emission tomography (PET) has a demonstrated ability to improve therapy selection. However, PET studies thus far using whole-body (WB) PET scanners to assess therapy response are limited to a lesion size greater than 2 cm to be quantitatively accurate. This is a challenge for breast cancer as a majority of patients present with early stage disease in which the lesions are smaller than 2 cm. To enable this treatment paradigm a PET scanner needs to be much more compact and less expensive than WB PET scanners and support correlative anatomical imaging. In addition, a high level of quantitative accuracy is needed. To meet these criteria, we will use the cost-effective dual-sided position-sensitive sparse sensor (DS-PS3) technology developed in Phase-I to build a viable PET system for the breast cancer window-of- opportunity response assessment task. The PET scanner is compatible with x-ray mammography or tomosynthesis, forming a dual-modality PET/X scanner system. We will then assess quantitative performance of this prototype with phantom images and we will acquire proof-of-concept patient images. The outcome of this Phase-2 application will be a clinic-ready prototype scanner that will be used to assess clinical feasibility and to acquire preliminary human-image data needed as evidence to warrant full commercial development and provide data for planning a clinical trial and regulatory submissions.
我们的目标是改善乳腺癌治疗与早期乳腺癌患者的匹配方式 通过在机会窗口期间及时评估治疗效果来分期疾病 诊断和手术切除。这样做的目的是让患者更快地接受有效的治疗, 改善结果,并减少无效治疗带来的毒性和医疗费用。我们将实现 通过开发商业上可行的定量分子乳腺成像系统(PET/X 扫描仪)与乳腺成像诊所中的乳房X线摄影或断层合成系统协同结合。 乳腺癌是美国女性中最常见的癌症类型,也是导致乳腺癌的第二大原因。 女性患肺癌后癌症死亡。乳腺癌治疗取得实质性进展 由于使用了靶向治疗。不幸的是,尽管靶向治疗取得了成功,但疾病复发 在某些情况下,表达靶标并接受这些疗法的患者的比例仍接近 50% 表型。这些药物可能非常昂贵并且具有毒副作用。从 FDA 批准的 69 个中选择 乳腺癌药物(大多数癌症)具有挑战性。提供快速、直接测量的测试 每个患者的治疗反应或缺乏治疗反应将通过将患者与患者相匹配而极大地有利于患者护理 已证明能成功对抗其疾病的药物。选择优化患者的治疗方法 结果是 NIH 精准医学计划和 NCI 建议的基石 癌症登月报告。 正电子发射断层扫描 (PET) 已被证明能够改善治疗选择。然而,PET 迄今为止,使用全身 (WB) PET 扫描仪评估治疗反应的研究仅限于病灶大小 大于2cm才能保证定量准确。对于大多数乳腺癌患者来说,这是一个挑战 出现早期疾病,病变小于 2 厘米。 为了实现这种治疗模式,PET 扫描仪需要比传统扫描仪更紧凑、更便宜。 WB PET 扫描仪并支持相关解剖成像。此外,定量精度高 是需要的。为了满足这些标准,我们将使用经济高效的双面位置敏感稀疏传感器 (DS-PS3) 技术在第一阶段开发,旨在为乳腺癌窗口构建可行的 PET 系统 机会响应评估任务。 PET 扫描仪与 X 射线乳房 X 光检查或 断层合成,形成双模态 PET/X 扫描仪系统。然后我们将评估定量表现 这个原型与幻影图像,我们将获得概念验证的患者图像。 第二阶段应用的成果将是一款可供临床使用的原型扫描仪,用于评估 临床可行性并获取初步的人体图像数据作为保证完全商业化的证据 开发并为规划临床试验和监管提交提供数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Coulis Jason Hunter其他文献

William Coulis Jason Hunter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Coulis Jason Hunter', 18)}}的其他基金

A Sparse-readout Quantitative PET scanner for breast cancer therapy optimization
用于优化乳腺癌治疗的稀疏读数定量 PET 扫描仪
  • 批准号:
    10080314
  • 财政年份:
    2016
  • 资助金额:
    $ 73.63万
  • 项目类别:
A Sparse-readout Quantitative PET scanner for breast cancer therapy optimization
用于优化乳腺癌治疗的稀疏读数定量 PET 扫描仪
  • 批准号:
    9256313
  • 财政年份:
    2016
  • 资助金额:
    $ 73.63万
  • 项目类别:
Quantitative dual-mode scanner for breast cancer therapy
用于乳腺癌治疗的定量双模式扫描仪
  • 批准号:
    8908973
  • 财政年份:
    2013
  • 资助金额:
    $ 73.63万
  • 项目类别:
Quantitative dual-mode scanner for breast cancer therapy
用于乳腺癌治疗的定量双模式扫描仪
  • 批准号:
    8840435
  • 财政年份:
    2013
  • 资助金额:
    $ 73.63万
  • 项目类别:
Quantitative dual-mode scanner for breast cancer therapy
用于乳腺癌治疗的定量双模式扫描仪
  • 批准号:
    8590731
  • 财政年份:
    2013
  • 资助金额:
    $ 73.63万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.63万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 73.63万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 73.63万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 73.63万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 73.63万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 73.63万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 73.63万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 73.63万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 73.63万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 73.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了