Mechanisms of Tubulin dimer Regulatory Pathways and their impact on Microtubule Function
微管蛋白二聚体调控途径的机制及其对微管功能的影响
基本信息
- 批准号:8818688
- 负责人:
- 金额:$ 30.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAxonal NeuropathyBindingBiochemicalBiogenesisBiological AssayCatalysisCell divisionCellsCellular biologyChimeric ProteinsComplexCrystallographyCytoplasmCytoskeletonDataDefectDevelopmentElectron MicroscopyEukaryotic CellFamilyFission YeastFluorescence MicroscopyGTP BindingGTP-Binding ProteinsGenerationsGenesGeneticGrowthGuanosine TriphosphateHealthHomeostasisHumanHydrolysisImage AnalysisIn VitroInborn Genetic DiseasesIndividualInheritedKenny-Caffey syndromeLateralLeadLife Cycle StagesLightLinkMediatingMethodsMicrotubule PolymerizationMicrotubulesModelingMolecularMolecular ConformationMutationPathway interactionsPatientsPlus End of the MicrotubulePropertyProteinsPublic HealthQuality ControlReagentRecruitment ActivityRegulationRegulatory PathwayResolutionRoleShapesStructural ModelsStructureTertiary Protein StructureTestingTimeTubulinbasebiophysical modelbiophysical techniquescell motilitycofactordevelopmental diseasedimerfollow-upin vitro Assayin vivolissencephalymonomerneoplastic cellnervous system disorderoverexpressionpolymerizationprotein complexreconstitutionstemthree dimensional structuretraffickingtumor
项目摘要
DESCRIPTION (provided by applicant): The dynamic microtubule cytoskeleton mediates intracellular organization, is responsible for force generation in dividing or migrating eukaryotic
cells, and forms tracks for intracellular trafficking. The key dynamic properties of microtubules, including polarized growth and "dynamic instability", stem directly from the unique structure and GTP hydrolysis activity of their building blocks, asymmetric dimers of α- and β-tubulin. Active αβ-tubulin dimers are assembled, maintained at high concentration in the cytoplasm, and degraded by highly conserved tubulin cofactors whose molecular mechanisms remain mostly mysterious, due in part to a lack of biochemical reconstitution. In addition, we do not understand how conserved families of Tumor Overexpressed Gene (TOG) domain proteins manipulate αβ-tubulin dimer conformation and incorporation to modulate microtubule dynamics. The importance of these pathways is underscored by the fact that genetic defects that impair the regulation of soluble tubulin are linked to inherited neurological and developmental disorders. This proposal is focused on understanding the mechanisms of these soluble αβ-tubulin regulators and how they impact microtubule dynamics. Our biophysical approach combines methods across multiple resolution scales, including in vitro reconstitution of purified protein complexes, 3D structural determination by x-ray crystallography and electron microscopy, and fluorescence microscopy-based assays of microtubule dynamics in real time. First, we will determine the mechanism by which tubulin cofactors regulate αβ-tubulin dimer assembly, activation, and degradation. We propose a new model, based on extensive biochemical reconstitution and structural studies, in which tubulin cofactors and a dedicated Arf-like G-protein form multi-subunit platforms on which soluble αβ-tubulins are manipulated, powered by GTP hydrolysis cycles. To test this model we will; 1) determine the 3D structures of tubulin cofactor platforms in three biochemical states to understand their molecular organization and conformational changes during catalysis; 2) dissect the mechanism of GTP hydrolysis during catalytic regulation; and 3) follow up exciting preliminary studies showing their direct effect in activating microtubule polymerization in vitro. Second, we will examine the molecular mechanisms of two types of TOG domains found in two classes of microtubule regulators, XMAP215/Dis1 and CLASP, which despite their structural similarity perform different functions. To determine how these proteins control microtubule assembly and function, we propose to explore multiple hypotheses, including a model based on our preliminary studies suggesting a wrapped organization of multiple TOG domains around each αβ-tubulin dimer. To test this model we will: 1) determine 3D structures of multi-TOG- domains-soluble αβ-tubulin dimer complexes using electron microscopy; 2) determine x-ray structures for two- adjacent TOG domains sets, from the two classes, in complex with soluble αβ-tubulin dimer; 3) dissect the unique functions of TOG domains from the two regulator classes by studying chimeric proteins, generated by domain swapping, in microtubule dynamics assays in vitro; and 4) visualize multi-TOG domain αβ-tubulin complexes at polymerizing microtubule ends. We expect our studies to yield new structural and biophysical models that will provide missing information on the regulation of soluble tubulin activation and recruitment during microtubule polymerization. This understanding will in turn point toward new strategies for addressing defects in tubulin biogenesis and regulation, potentially impacting patients with a range of developmental and neurological disorders.
描述(由申请人提供):动态微管细胞骨架介导细胞内组织,负责真核生物分裂或迁移的力产生
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jawdat MH Al-Bassam其他文献
Jawdat MH Al-Bassam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jawdat MH Al-Bassam', 18)}}的其他基金
Mechanisms of Tubulin dimer Regulatory Pathways and their impact on Microtubule Function
微管蛋白二聚体调控途径的机制及其对微管功能的影响
- 批准号:
10219718 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Mechanisms of Tubulin dimer Regulatory Pathways and their impact on Microtubule Function.
微管蛋白二聚体调节途径的机制及其对微管功能的影响。
- 批准号:
10053131 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Mechanisms of Tubulin dimer Regulatory Pathways and their impact on Microtubule Function.
微管蛋白二聚体调节途径的机制及其对微管功能的影响。
- 批准号:
10414979 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Mechanisms of Tubulin Dimer Regulatory Pathways and Their Impact on Microtubule Function
微管蛋白二聚体调控途径的机制及其对微管功能的影响
- 批准号:
10625195 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Mechanisms of Tubulin dimer Regulatory Pathways and their impact on Microtubule Function
微管蛋白二聚体调控途径的机制及其对微管功能的影响
- 批准号:
10390213 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Mechanisms of Tubulin dimer Regulatory Pathways and their impact on Microtubule Function.
微管蛋白二聚体调节途径的机制及其对微管功能的影响。
- 批准号:
10212401 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Mechanisms of Tubulin dimer Regulatory Pathways and their impact on Microtubule Function.
微管蛋白二聚体调节途径的机制及其对微管功能的影响。
- 批准号:
10619579 - 财政年份:2015
- 资助金额:
$ 30.03万 - 项目类别:
Microtubule Polymerization and Depolymerization Mechanisms by Conserved Proteins
保守蛋白的微管聚合和解聚机制
- 批准号:
8042154 - 财政年份:2010
- 资助金额:
$ 30.03万 - 项目类别:
Microtubule Polymerization and Depolymerization Mechanisms by Conserved Proteins
保守蛋白的微管聚合和解聚机制
- 批准号:
7450236 - 财政年份:2008
- 资助金额:
$ 30.03万 - 项目类别:
Microtubule Polymerization and Depolymerization Mechanisms by Conserved Proteins
保守蛋白的微管聚合和解聚机制
- 批准号:
8327133 - 财政年份:2008
- 资助金额:
$ 30.03万 - 项目类别:
相似海外基金
Intermediate Filament Proteostasis and RNA regulation in Giant Axonal Neuropathy
巨轴突神经病中的中间丝蛋白稳态和 RNA 调节
- 批准号:
10415093 - 财政年份:2021
- 资助金额:
$ 30.03万 - 项目类别:
Intermediate Filament Proteostasis and RNA regulation in Giant Axonal Neuropathy
巨轴突神经病中的中间丝蛋白稳态和 RNA 调节
- 批准号:
10195588 - 财政年份:2021
- 资助金额:
$ 30.03万 - 项目类别:
Treatment of Peripheral Nervous System Dysfunction in Giant Axonal Neuropathy
巨大轴突神经病周围神经系统功能障碍的治疗
- 批准号:
9222652 - 财政年份:2016
- 资助金额:
$ 30.03万 - 项目类别:
Treatment of Peripheral Nervous System Dysfunction in Giant Axonal Neuropathy
巨大轴突神经病周围神经系统功能障碍的治疗
- 批准号:
9049666 - 财政年份:2016
- 资助金额:
$ 30.03万 - 项目类别:
Tissue Engineered Human Neuromuscular Junctions for Modeling Axonal Neuropathy
用于模拟轴突神经病的组织工程人类神经肌肉接头
- 批准号:
9235682 - 财政年份:2016
- 资助金额:
$ 30.03万 - 项目类别:
SLC25A46 mutations cause optic atrophy, axonal neuropathy, and cerebellar neurodegeneration
SLC25A46 突变导致视神经萎缩、轴突神经病变和小脑神经变性
- 批准号:
9265469 - 财政年份:2016
- 资助金额:
$ 30.03万 - 项目类别:
TISSUE ENGINEERED HUMAN NEUROMUSCULAR JUNCTIONS FOR MODELING AXONAL NEUROPATHY
用于轴突神经病建模的组织工程人体神经肌肉接头
- 批准号:
10054199 - 财政年份:2016
- 资助金额:
$ 30.03万 - 项目类别:
Treatment of Peripheral Nervous System Dysfunction in Giant Axonal Neuropathy
巨大轴突神经病周围神经系统功能障碍的治疗
- 批准号:
9407051 - 财政年份:2016
- 资助金额:
$ 30.03万 - 项目类别: