TISSUE ENGINEERED HUMAN NEUROMUSCULAR JUNCTIONS FOR MODELING AXONAL NEUROPATHY
用于轴突神经病建模的组织工程人体神经肌肉接头
基本信息
- 批准号:10054199
- 负责人:
- 金额:$ 35.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-11-15 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnimal ModelAutopsyAxonAxonal NeuropathyAxonal TransportBedsBiochemicalBiological AssayBiological ModelsBiomedical EngineeringBiophysicsBiopsyCell DensityCell LineCellsCharcot-Marie-Tooth DiseaseClinical TreatmentCoculture TechniquesCritical PathwaysDefectDevelopmentDiseaseDisease modelDrug DesignDrug ScreeningElectrophysiology (science)EngineeringEtiologyEvaluationExhibitsFunctional disorderFutureGene MutationGenerationsGenesGoalsHDAC6 geneHereditary Motor and Sensory-Neuropathy Type IIHumanHuman EngineeringImaging DeviceIn VitroInvestigationKnowledgeLimb structureMethodsMitochondriaModelingMolecularMotor NeuronsMuscleMuscle FibersMutationMyoblastsNeuromuscular JunctionNeuronsNeuropathyPathologicPathologyPathway interactionsPatientsPerformancePeripheralPeripheral Nervous System DiseasesPharmaceutical PreparationsPhenotypePhysiologicalPresynaptic TerminalsPropertyRoleSamplingSeveritiesSignal TransductionSkeletal MuscleSourceStimulusStructural defectStructureStudy modelsSymptomsSynapsesSystemTechniquesTestingTherapeuticTherapeutic InterventionTissue EngineeringTissuesValidationbaseconditioningdensitydisorder subtypeexperimental grouphuman modelhuman tissueimprovedin vitro activityin vivoinduced pluripotent stem cellinhibitor/antagonistinsightmalformationmouse modelmutantnanopatternnovelnovel therapeuticsorganizational structurepre-clinicalpre-clinical assessmentpresynapticpreventrestorationscaffoldscreeningstem cellssynaptic functionsynaptogenesistargeted treatmenttheoriestherapeutic targetthree-dimensional modelingtooltrait
项目摘要
PROJECT SUMMARY
Charcot-Marie-Tooth disease type 2 (CMT2) is a severely debilitating axonopathic peripheral neuropathy,
characterized by neuromuscular junction (NMJ) breakdown, axonal transport defects, and neuronal structure
malformations. Although animal models for this condition are available, the wide array of gene mutations known
to cause a CMT2 phenotype (>30 identified to date) makes the study of common pathway deficits problematic.
This in turn makes identification of suitable therapeutic targets, capable of treating a wide range of patients,
extremely difficult. The successful generation of human induced pluripotent stem cell (hiPSC)-derived motor
neurons from patients with CMT2 makes the establishment of patient-specific humanized assays for studying
disease etiology a tangible goal. However, the ability to effectively model CMT2 in vitro using such cells has yet
to be achieved, due to the complexity associated with generating robust and functionally mature NMJs in culture.
We posit that a culture platform integrating correct tissue-level structural organization, physiologically relevant
cell densities, and correct electromechanical conditioning stimuli will promote the development of human
myotube-motor neuron co-cultures capable of supporting mature synapse formation. Using our well-established
nanopatterned cell sheet manipulation techniques, we will generate scaffold-free 3D tissue structures using
hiPSC-derived motor neurons and primary human myoblasts with highly ordered tissue structures. These
constructs will be assessed for their ability to promote NMJ formation, and electromechanical conditioning will
then be investigated as a means to drive synapse development. This system will be developed in conjunction
with motor neurons derived from four CMT2 patients. Co-culture constructs incorporating these cells will be
investigated for their capacity to accurately model the disease’s pathophysiology in vitro, and to highlight
phenotypic similarities across different mutant lines. Given the prominent role of mitochondria in NMJ
development, and the observed breakdown in axonal transport in multiple CMT2-related mutations, we
hypothesize that reduced mitochondrial density in presynaptic terminals leads to malformations in NMJ
development and ultimately breakdown of the synapse. We will use our CMT2 hiPSC-motor neurons to evaluate
axon transport deficits and structural malformations in these cells and correlate these findings with quantified
changes in NMJ development within our bioengineered co-culture platform. Finally, we will investigate whether
improvement in axon transport properties in multiple CMT2 neuron lines (via stabilization of axonal development
with histone deacetylase 6 inhibitors) results in significant improvements in NMJ development and stability in
human cells. Consistency of results across different patient mutations will highlight axonal transport deficits as a
major causal factor in the development of the human CMT2 phenotype, and validate our platform as a suitable
tool for use in the preclinical assessment of new drugs designed to ameliorate peripheral neuropathic conditions.
项目摘要
腓骨肌萎缩症2型(CMT 2)是一种严重衰弱性轴突病性周围神经病变,
以神经肌肉接头(NMJ)断裂、轴突运输缺陷和神经元结构为特征
畸形虽然这种疾病的动物模型是可用的,但已知的广泛的基因突变
导致CMT 2表型(迄今为止鉴定了>30种)使得共同途径缺陷的研究成为问题。
这反过来又使得能够治疗广泛患者的合适治疗靶点的鉴定,
非常困难。人诱导多能干细胞(hiPSC)衍生的运动细胞的成功产生
CMT 2患者的神经元建立了患者特异性人源化测定,用于研究
疾病病因学是一个切实的目标。然而,使用这种细胞在体外有效地模拟CMT 2的能力还没有被证实。
这是由于与在培养中产生稳健和功能成熟的NMJ相关的复杂性。
我们认为,一个文化平台,整合正确的组织水平的结构组织,生理相关的,
细胞密度和正确的电机械条件刺激将促进人类的发育
能够支持成熟突触形成的肌管-运动神经元共培养物。利用我们完善的
纳米图案化细胞片操作技术,我们将产生无支架的3D组织结构,使用
hiPSC衍生的运动神经元和具有高度有序组织结构的原代人成肌细胞。这些
将评估结构促进NMJ形成的能力,并将
然后作为驱动突触发育的手段进行研究。该系统将与
来自四名CMT 2患者的运动神经元。包含这些细胞的共培养构建体将
研究了他们在体外准确模拟疾病病理生理学的能力,并强调
不同突变株系的表型相似性。鉴于线粒体在NMJ中的重要作用,
发展,以及在多个CMT 2相关突变中观察到的轴突运输的崩溃,我们
假设突触前末梢线粒体密度降低导致NMJ畸形
突触的发育并最终崩溃。我们将使用我们的CMT 2 hiPSC运动神经元来评估
轴突运输缺陷和结构畸形,并将这些发现与定量
在我们的生物工程共培养平台内NMJ发展的变化。最后,我们将研究是否
在多个CMT 2神经元系中轴突运输性质改善(通过轴突发育的稳定化
与组蛋白去乙酰化酶6抑制剂)导致NMJ发育和稳定性的显着改善,
人体细胞不同患者突变结果的一致性将突出轴突转运缺陷作为一种遗传学机制。
在人类CMT 2表型的发展的主要因果因素,并验证我们的平台作为一个合适的
用于临床前评估旨在改善周围神经病变的新药的工具。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NanoMEA: A Tool for High-Throughput, Electrophysiological Phenotyping of Patterned Excitable Cells.
- DOI:10.1021/acs.nanolett.9b04152
- 发表时间:2020-03-11
- 期刊:
- 影响因子:10.8
- 作者:Smith AST;Choi E;Gray K;Macadangdang J;Ahn EH;Clark EC;Laflamme MA;Wu JC;Murry CE;Tung L;Kim DH
- 通讯作者:Kim DH
HDAC6 Inhibition Corrects Electrophysiological and Axonal Transport Deficits in a Human Stem Cell-Based Model of Charcot-Marie-Tooth Disease (Type 2D).
- DOI:10.1002/adbi.202101308
- 发表时间:2022-03
- 期刊:
- 影响因子:3.7
- 作者:Smith AST;Kim JH;Chun C;Gharai A;Moon HW;Kim EY;Nam SH;Ha N;Song JY;Chung KW;Doo HM;Hesson J;Mathieu J;Bothwell M;Choi BO;Kim DH
- 通讯作者:Kim DH
A biomaterial approach to cell reprogramming and differentiation.
- DOI:10.1039/c6tb03130g
- 发表时间:2017-04-07
- 期刊:
- 影响因子:0
- 作者:Long J;Kim H;Kim D;Lee JB;Kim DH
- 通讯作者:Kim DH
Facile fabrication of tissue-engineered constructs using nanopatterned cell sheets and magnetic levitation.
- DOI:10.1088/1361-6528/aa55e0
- 发表时间:2017-02-17
- 期刊:
- 影响因子:3.5
- 作者:Penland N;Choi E;Perla M;Park J;Kim DH
- 通讯作者:Kim DH
Astrocyte-derived extracellular vesicles enhance the survival and electrophysiological function of human cortical neurons in vitro.
- DOI:10.1016/j.biomaterials.2021.120700
- 发表时间:2021-04
- 期刊:
- 影响因子:14
- 作者:Chun C;Smith AST;Kim H;Kamenz DS;Lee JH;Lee JB;Mack DL;Bothwell M;Clelland CD;Kim DH
- 通讯作者:Kim DH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deok-Ho Kim其他文献
Deok-Ho Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deok-Ho Kim', 18)}}的其他基金
High-throughput nanoIEA-based Assay for Screening Immune Cell-Vascular Interactions
用于筛选免疫细胞-血管相互作用的基于 nanoIEA 的高通量测定法
- 批准号:
10592897 - 财政年份:2023
- 资助金额:
$ 35.64万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10502626 - 财政年份:2022
- 资助金额:
$ 35.64万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10869757 - 财政年份:2022
- 资助金额:
$ 35.64万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10861445 - 财政年份:2022
- 资助金额:
$ 35.64万 - 项目类别:
A Human iPSC-based 3D Microphysiological System for Modeling Cardiac Dysfunction in Microgravity
基于人体 iPSC 的 3D 微生理系统,用于模拟微重力下的心脏功能障碍
- 批准号:
10632929 - 财政年份:2022
- 资助金额:
$ 35.64万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10636892 - 财政年份:2022
- 资助金额:
$ 35.64万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10179233 - 财政年份:2021
- 资助金额:
$ 35.64万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10378025 - 财政年份:2021
- 资助金额:
$ 35.64万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10661492 - 财政年份:2021
- 资助金额:
$ 35.64万 - 项目类别:
DISEASE MODELING AND PHENOTYPIC DRUG SCREENING FOR DYSTROPHIC CARDIOMYOPATHY
营养不良性心肌病的疾病建模和表型药物筛选
- 批准号:
10164856 - 财政年份:2020
- 资助金额:
$ 35.64万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 35.64万 - 项目类别:
Research Grant