Video Analysis for Ensuring Safer Diffusion of New Procedures
视频分析确保新程序更安全地传播
基本信息
- 批准号:8799589
- 负责人:
- 金额:$ 120.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2019-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Video Analysis for Ensuring Safer Diffusion of New Procedures New surgical procedures are introduced continuously into practice. Even when new procedures are proven safe and effective in randomized clinical trials, their diffusion into divers practice settings is often suboptimal. The uneven mastery of new techniques implied by these innovations may contribute to wide variations in outcomes and effectiveness across providers. Strategies for identifying best techniques and disseminating them would have clear benefits, but practical, scalable strategies have been elusive. Whether video analysis can be used for this purpose has not been explored. In this proposal, we will build on our recent work, published in NEJM, which uses vide analysis to assess surgical skill. Leveraging this prior work in the Michigan Bariatric Surgery Collaborative (MBSC), we will study sleeve gastrectomy, which was recently approved by the Center for Medicare and Medicaid Services (CMS). We have the following Specific Aims: Aim 1: To use surgical video analysis to examine variations in surgical technique. We will collect videos from all Michigan surgeons who perform sleeve gastrectomy. Using a standardized instrument, we will have peer reviewers assess each other's technique. The peer review instrument includes aspects of technique that relate to both short-term and long-term outcomes. Aim 2. To examine the relationship between surgical technique and patient outcomes. We will link these details on technique from video analysis to patient outcome data from the MBSC clinical registry. After adjusting for all potential confounders, we will assess the relationship between surgical technique and short-term safety outcomes and long-term effectiveness outcomes. Aim 3. To implement best technical practices and evaluate the impact on patient outcomes. . We will design and implement an intervention in a stepped wedge cluster randomized trial using the MBSC platform. The intervention will include a checklist of best practices, videos demonstrating the best practices, and coaching sessions by surgeons with expertise in these techniques. The most immediate impact of this work will be for patients undergoing sleeve gastrectomy in Michigan and beyond. However, the use of video analysis to understand and disseminate best technical practices will be a powerful tool for improving the quality of surgery and medical procedures more broadly.
描述(由申请人提供):视频分析,以确保更安全的新程序的扩散新的外科手术不断引入实践。即使新的程序被证明是安全和有效的随机临床试验,他们的扩散到潜水实践设置往往是次优。这些创新所隐含的对新技术的掌握程度参差不齐,可能会导致提供者之间的结果和有效性存在很大差异。确定最佳技术并加以传播的战略将有明显的好处,但实际的、可扩展的战略一直难以捉摸。视频分析是否可用于此目的尚未探讨。在这项提案中,我们将建立在我们最近发表在NEJM上的工作基础上,该工作使用视频分析来评估手术技巧。利用密歇根州减肥手术协作(MBSC)的先前工作,我们将研究袖状胃切除术,该手术最近获得了医疗保险和医疗补助服务中心(CMS)的批准。我们有以下具体目标:目标1:使用手术视频分析来检查手术技术的变化。我们将收集所有密歇根州外科医生进行袖状胃切除术的视频。使用标准化的工具,我们将让同行评审员评估彼此的技术。同行审查工具包括与短期和长期成果有关的技术方面。目标二。检查手术技术与患者结局之间的关系。我们将从视频分析中将这些技术细节与来自MBSC临床注册的患者结局数据联系起来。在调整所有潜在混杂因素后,我们将评估手术技术与短期安全性结局和长期有效性结局之间的关系。目标3。实施最佳技术实践并评估对患者结局的影响。.我们将使用MBSC平台设计并实施一项阶梯式楔形分组随机试验中的干预措施。干预措施将包括最佳实践清单,演示最佳实践的视频,以及具有这些技术专业知识的外科医生的辅导课程。这项工作最直接的影响将是在密歇根州及其他地区接受袖状胃切除术的患者。然而,使用视频分析来理解和传播最佳技术实践将是更广泛地提高手术和医疗程序质量的有力工具。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Brigham Dimick其他文献
Variation in Surgical Spending among Highest-Quality Hospitals for Complex Cancer Surgery
- DOI:
10.1016/j.jamcollsurg.2020.07.751 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Adrian Diaz;Justin Brigham Dimick;Hari Nathan - 通讯作者:
Hari Nathan
Justin Brigham Dimick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Brigham Dimick', 18)}}的其他基金
Rapid Adoption of Robotic Surgery: Risks, Benefits, and Unintended Consequences
机器人手术的快速采用:风险、益处和意外后果
- 批准号:
10553669 - 财政年份:2022
- 资助金额:
$ 120.98万 - 项目类别:
Rapid Adoption of Robotic Surgery: Risks, Benefits, and Unintended Consequences
机器人手术的快速采用:风险、益处和意外后果
- 批准号:
10338410 - 财政年份:2022
- 资助金额:
$ 120.98万 - 项目类别:
Using Video Analysis to Improve Outcomes of Laparoscopic Colectomy
使用视频分析改善腹腔镜结肠切除术的结果
- 批准号:
10457323 - 财政年份:2018
- 资助金额:
$ 120.98万 - 项目类别:
Long-Term Comparative Safety and Economic Outcomes of Sleeve Gastrectomy
袖状胃切除术的长期安全性和经济结果比较
- 批准号:
9751848 - 财政年份:2018
- 资助金额:
$ 120.98万 - 项目类别:
Using Video Analysis to Improve Outcomes of Laparoscopic Colectomy
使用视频分析改善腹腔镜结肠切除术的结果
- 批准号:
10221051 - 财政年份:2018
- 资助金额:
$ 120.98万 - 项目类别:
Long-Term Comparative Safety and Economic Outcomes of Sleeve Gastrectomy
袖状胃切除术的长期安全性和经济结果比较
- 批准号:
9925222 - 财政年份:2018
- 资助金额:
$ 120.98万 - 项目类别:
Obesity & Gastrointestinal Surgery Research Training Program
肥胖
- 批准号:
10626354 - 财政年份:2016
- 资助金额:
$ 120.98万 - 项目类别:
Long-Term Comparative Effectiveness of the Lap Band
圈带的长期比较有效性
- 批准号:
8824528 - 财政年份:2014
- 资助金额:
$ 120.98万 - 项目类别:
Long-Term Comparative Effectiveness of the Lap Band
圈带的长期比较有效性
- 批准号:
8617919 - 财政年份:2014
- 资助金额:
$ 120.98万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 120.98万 - 项目类别:
Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
- 批准号:
10089592 - 财政年份:2024
- 资助金额:
$ 120.98万 - 项目类别:
Collaborative R&D
Home Office Criminal Justice System Strategy Analysis Fellowship
内政部刑事司法系统战略分析奖学金
- 批准号:
ES/Y004906/1 - 财政年份:2024
- 资助金额:
$ 120.98万 - 项目类别:
Fellowship
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 120.98万 - 项目类别:
Research Grant
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 120.98万 - 项目类别:
Research Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
- 批准号:
2315532 - 财政年份:2024
- 资助金额:
$ 120.98万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 120.98万 - 项目类别:
Continuing Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 120.98万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 120.98万 - 项目类别:
Standard Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 120.98万 - 项目类别:
Standard Grant