Extending Chemical Synthesis to Ion Channels and Transporters

将化学合成扩展到离子通道和转运蛋白

基本信息

项目摘要

DESCRIPTION (provided by applicant): Ion channels and transporters are integral membrane proteins that play important roles in virtually all aspects of human physiology. Understanding the inner workings of these proteins is important, as dysfunctions of ion channels and transporters lead to human diseases. In this proposal, we use a novel approach, chemical synthesis, to investigate these proteins. Chemical synthesis is a powerful method for protein modification because it allows the incorporation of a wide variety of unnatural amino acids and protein backbone modifications for precise changes in the protein. In this application, we use the chemical synthesis of the K+ channels, KcsA and KvAP, to investigate the mechanism of slow inactivation. Slow inactivation is a conformational change at the selectivity filter of K+ channels that converts it from a conductive to a non- conductive state. Slow inactivation plays a crucial role in determining the electrical properties of an excitable cell. We will address the following unresolved issues regarding slow inactivation: i) What is the conformation of the selectivity filte in the slow inactivated state? ii) How do permeant ions modulate slow inactivation? and iii) Do similar conformational changes at the selectivity filter underlie slow inactivation in different K+ channels? We will employ a multidisciplinary approach for these investigations that combines chemical synthesis with electrophysiology and structural studies using X-ray crystallography. We also propose to extend chemical synthesis to transporters by carrying out the synthesis of GltPH, an archaeal homolog of eukaryotic glutamate transporters. Glutamate transporters mediate the concentrative uptake of glutamate by harnessing the energy from the electrochemical gradient of ions. Dysfunction of glutamate transporters has been implicated in neurological diseases such as Alzheimer's and amyotrophic lateral sclerosis (ALS). A central unanswered question in glutamate transporters is the mechanism by which the electrochemical gradients of the ions are coupled to the uptake of glutamate. Here we use chemical synthesis of GltPH to unravel the mechanism of Na+ coupled transport. The research proposed is significant because it will provide deeper mechanistic insights into the physiologically important processes of slow inactivation in K+ channels and Na+ coupled transport. Further, this research will establish the methodology of chemical synthesis for investigating integral membrane proteins.
描述(申请人提供):离子通道和转运蛋白是完整的膜蛋白,在人体生理学的几乎所有方面都扮演着重要的角色。了解这些蛋白质的内部工作机制很重要,因为离子通道和转运蛋白的功能障碍会导致人类疾病。在这个提议中,我们使用一种新的方法,化学合成,来研究这些蛋白质。化学合成是一种强有力的蛋白质修饰方法,因为它允许将多种非天然氨基酸和蛋白质骨架修饰结合在一起,以实现蛋白质的精确变化。在这个应用中,我们使用K+通道KCSA和KvAP的化学合成来研究缓慢失活的机制。缓慢失活是K+通道选择性过滤器的构象变化 这会将其从导电状态转换为非导电状态。慢失活在决定可兴奋细胞的电学性质方面起着至关重要的作用。我们将解决以下关于缓慢失活的悬而未决的问题:i)在缓慢失活状态下选择性过滤器的构象是什么?Ii)离子是如何调节缓慢失活的?和iii)在不同K+中缓慢失活的选择性过滤器上是否发生了类似的构象变化 频道?我们将采用多学科方法进行这些研究,将化学合成与电生理学相结合,并使用X射线结晶学进行结构研究。我们还建议将化学合成扩展到转运体,通过进行GltPH的合成,GltPH是真核细胞谷氨酸转运体的古生代同源物。谷氨酸转运体通过利用离子的电化学梯度能量来调节谷氨酸的集中摄取。谷氨酸转运体功能障碍与阿尔茨海默病和肌萎缩侧索硬化症(ALS)等神经系统疾病有关。谷氨酸转运体的一个中心悬而未决的问题是,离子的电化学梯度与谷氨酸摄取的耦合机制。在这里,我们使用化学合成的GltPh来揭示Na+偶联转运的机制。这项研究具有重要意义,因为它将为K+通道和Na+耦合转运中缓慢失活的生理重要过程提供更深层次的机制洞察。此外,本研究还将建立研究完整膜蛋白的化学合成方法学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francis Valiyaveetil其他文献

Francis Valiyaveetil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francis Valiyaveetil', 18)}}的其他基金

A new perspesective on ion conductance and structural dynamics of ion channels using 2D IR
使用 2D IR 对离子电导和离子通道结构动力学的新视角
  • 批准号:
    10620175
  • 财政年份:
    2020
  • 资助金额:
    $ 30.8万
  • 项目类别:
A new perspesective on ion conductance and structural dynamics of ion channels using 2D IR
使用 2D IR 对离子电导和离子通道结构动力学的新视角
  • 批准号:
    10405536
  • 财政年份:
    2020
  • 资助金额:
    $ 30.8万
  • 项目类别:
A new perspesective on ion conductance and structural dynamics of ion channels using 2D IR
使用 2D IR 对离子电导和离子通道结构动力学的新视角
  • 批准号:
    10222727
  • 财政年份:
    2020
  • 资助金额:
    $ 30.8万
  • 项目类别:
Extending Chemical Synthesis to Ion Channel Proteins
将化学合成扩展到离子通道蛋白
  • 批准号:
    8440348
  • 财政年份:
    2009
  • 资助金额:
    $ 30.8万
  • 项目类别:
Extending Chemical Synthesis to Ion Channel Proteins
将化学合成扩展到离子通道蛋白
  • 批准号:
    7796760
  • 财政年份:
    2009
  • 资助金额:
    $ 30.8万
  • 项目类别:
Extending Chemical Synthesis to Ion Channels and Transporters
将化学合成扩展到离子通道和转运蛋白
  • 批准号:
    8921212
  • 财政年份:
    2009
  • 资助金额:
    $ 30.8万
  • 项目类别:
Extending Chemical Synthesis to Ion Channel Proteins
将化学合成扩展到离子通道蛋白
  • 批准号:
    8265907
  • 财政年份:
    2009
  • 资助金额:
    $ 30.8万
  • 项目类别:
Extending Chemical Synthesis to Ion Channel Proteins
将化学合成扩展到离子通道蛋白
  • 批准号:
    8055543
  • 财政年份:
    2009
  • 资助金额:
    $ 30.8万
  • 项目类别:
Probing functional mechanisms in K+ channels using unnatural mutagenesis
利用非自然诱变探索 K 通道的功能机制
  • 批准号:
    9764015
  • 财政年份:
    2009
  • 资助金额:
    $ 30.8万
  • 项目类别:
Probing functional mechanisms in K+ channels using unnatural mutagenesis
利用非自然诱变探索 K 通道的功能机制
  • 批准号:
    10000155
  • 财政年份:
    2009
  • 资助金额:
    $ 30.8万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.8万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了